Solar methane decarbonization is an attractive pathway for a transition toward an hydrogen-based economy. In the frame of the European SOLHYCARB project, it was proposed to investigate this solar process extensively. At CNRS-PROMES, two indirect heating solar reactors (20 and 50 kW) were designed, built, and tested for methane decarbonization. They consist of graphite cavity-type receivers approaching the blackbody behavior. The CH4 dissociation reaction was carried out in tubular sections inserted in the solar absorber receiving concentrated solar irradiation. The 20 kW solar reactor (SR20) was especially suitable to study the chemical reaction and methane conversion performances depending on the experimental conditions (mainly temperature and residence time). The 50 kW solar reactor (SR50) was operated to produce significant amounts of carbon black for determining its properties and quality in the various possible commercial applications. The main encountered problem was the particle evacuation. Solutions were proposed for large-scale industrial applications. A process analysis was achieved for a 14.6 MW solar chemical plant on the basis of a process flow-sheet. A production of 436 kg/h of hydrogen and 1300 kg/h of carbon black could be obtained for 1737 kg/h of methane consumed, with an hydrogen cost competitive to conventional methane reforming. This paper summarizes the main results and conclusions of the project.

References

1.
Barreto
,
L.
,
Makihira
,
A.
, and
Riahi
,
K.
, 2003, “
The Hydrogen Economy in the 21st Century: A Sustainable Development Scenario
,”
Int. J. Hydrogen Energy
,
28
(
3
), pp.
267
284
.
2.
Donnet
,
J. B.
,
Bansal
,
R. C.
, and
Wang
,
M. J.
, 1993,
Carbon Black
, 2nd ed., revised and expanded,
Science and Technology
,
Marcel Dekker, New York
.
3.
Fabry
,
F.
,
Flamant
,
G.
, and
Fulcheri
,
L.
, 2001, “
Carbon Black Processing by Thermal Plasma. Analysis of the Particle Formation Mechanism
,”
Chem. Eng. Sci.
,
56
(
6
), pp.
2123
2132
.
4.
Lockwood
,
F. C.
, and
Van Niekerk
,
J. E.
, 1995, “
Parametric Study of a Carbon Black Oil Furnace
,”
Combust. Flame
,
103
(
1–2
), pp.
76
90
.
5.
Muradov
,
N.
, and
Veziroglu
,
T. N.
, 2008, “
Green Path From Fossil-based to Hydrogen Economy: An Overview of Carbon-neutral Technologies
,”
Int. J. Hydrogen Energy
,
33
, pp.
6804
6839
.
6.
Ozalp
,
N.
,
Kogan
,
A.
, and
Epstein
,
M.
, 2009, “
Solar Decomposition of Fossil Fuels as an Option for Sustainability
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
710
720
.
7.
Dahl
,
J. K.
,
Buechler
,
K. J.
,
Finley
,
R.
,
Stanislaus
,
T.
,
Weimer
,
A. W.
,
Lewandowski
,
A.
,
Bingham
,
C.
,
Smeets
,
A.
, and
Schneider
,
A.
, 2004, “
Rapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor
,”
Energy
,
29
(
5–6
), pp.
715
725
.
8.
Maag
,
G.
,
Zanganeh
,
G.
, and
Steinfeld
,
A.
, 2009, “
Solar Thermal Cracking of Methane in a Particle-flow Reactor for the Co-production of Hydrogen and Carbon
,”
Int. J. Hydrogen Energy
,
34
, pp.
7676
7685
.
9.
Kogan
,
A.
,
Israeli
,
M.
, and
Alcobi
,
E.
, 2007, “
Production of Hydrogen and Carbon by Solar Thermal Methane Splitting. IV. Preliminary Simulation of a Confined Tornado Flow Configuration by Computational Fluid Dynamics
,”
Int. J. Hydrogen Energy
,
32
(
18
), pp.
4800
4810
.
10.
Wyss
,
J.
,
Martinek
,
J.
,
Kerins
,
M.
,
Dahl
,
J. K.
,
Weimer
,
A.
,
Lewandowski
,
A.
, and
Bingham
,
C.
, 2007, “
Rapid Solar-thermal Decarbonization of Methane in a Fluid-wall Aerosol Flow Reactor—Fundamentals and Application
,”
Int. J. Chem. React. Eng.
,
5
, p.
A69
.
11.
Dahl
,
J. K.
,
Buechler
,
K. J.
,
Weimer
,
A. W.
,
Lewandowski
,
A.
, and
Bingham
,
C.
, 2004, “
Solar-thermal Dissociation of Methane in a Fluid-wall Aerosol Flow Reactor
,”
Int. J. Hydrogen Energy
,
29
(
7
), pp.
725
736
.
12.
Muradov
,
N.
, 2001, “
Catalysis of Methane Decomposition over Elemental Carbon
,”
Catal. Commun.
,
2
(
3–4
), pp.
89
94
.
13.
Pinilla
,
J. L.
,
Moliner
,
R.
,
Suelves
,
I.
,
Lázaro
,
M. J.
,
Echegoyen
,
Y.
, and
Palacios
,
J. M.
, 2007, “
Production of Hydrogen and Carbon Nanofibers by Thermal Decomposition of Methane Using Metal Catalysts in a Fluidized Bed Reactor
,”
Int. J. Hydrogen Energy
,
32
(
18
), pp.
4821
4829
.
14.
Wullenkord
,
M.
,
Funken
,
K. H.
,
Sattler
,
C.
, and
Pitz-Paal
,
R.
, 2010,
“Hydrogen Production by Thermal Cracking of Methane—Investigation of Reaction conditions
,”
Proceedings of WHEC 2010
,
Essen, Germany
.
15.
Abanades
,
S.
,
Tescari
,
S.
,
Rodat
,
S.
, and
Flamant
,
G.
, 2009, “
Natural Gas Pyrolysis in Double-walled Reactor Tubes Using Plasma Arc or Concentrated Solar Radiation as External Heating Source
,”
J. Nat. Gas Chem.
,
18
(
1
), pp.
1
8
.
16.
Lynum
,
S.
,
Hox
,
K.
,
Haugsten
,
K.
, and
Langoy
,
J.
, 1993, “
System for the Production of Carbon Black
,” Kvaerner Eng., Patent WO 93/20153.
17.
Boutot
,
T. J.
,
Buckle
,
K.
,
Collins
,
F. X.
,
Claus
,
S. J.
,
Estey
,
C. A.
,
Fraser
,
D. M.
,
Liu
,
Z.
, and
Whidden
,
T. K.
, 2007, “
Decomposition of Natural Gas or Methane Using Cold Arc Discharge
,” Atlantic Hydrogen, Patent WO2007/019664 A1.
18.
Rodat
,
S.
,
Abanades
,
S.
,
Sans
,
J. L.
, and
Flamant
,
G.
, 2009, “
Hydrogen Production From Solar Thermal Dissociation of Natural Gas: Development of a 10 kW Solar Chemical Reactor Prototype
,”
Solar Energy
,
83
(
9
), pp.
1599
1610
.
19.
Rodat
,
S.
,
Abanades
,
S.
, and
Flamant
,
G.
, 2009, “
High-Temperature Solar Methane Dissociation in a Multitubular Cavity-Type Reactor in the Temperature Range 1823–2073 K
,”
Energy Fuels
,
23
, pp.
2666
2674
.
20.
Rodat
,
S.
,
Abanades
,
S.
,
Sans
,
J. L.
, and
Flamant
,
G.
, 2010, “
A Pilot-scale Solar Reactor for the Production of Hydrogen and Carbon Black From Methane Splitting
,”
Int. J. Hydrogen Energy
,
35
(
15
), pp.
7748
7758
.
21.
Rodat
,
S.
,
Abanades
,
S.
,
Coulié
,
J.
, and
Flamant
,
G.
, 2009, “
Kinetic Modelling of Methane Decomposition in a Tubular Solar Reactor
,”
Chem. Eng. J.
,
146
(
1
), pp.
120
127
.
22.
Parkash
,
S.
, 2009,
Petroleum Fuels Manufacturing Handbook
,
McGraw Hill Professional
,
McGraw-Hill Education - Europe
.
23.
Serban
,
M.
,
Lewis
,
M. A.
,
Marshall
,
C. L.
, and
Doctor
,
R. D.
, 2003, “
Hydrogen Production by Direct Contact Pyrolysis of Natural Gas
,”
Energy Fuels
,
17
, pp.
705
713
.
24.
Shpilrain
,
E. E.
,
Shterenberg
,
V. Y.
, and
Zaichenko
,
V. M.
, 1999, “
Comparative Analysis of Different Natural Gas Pyrolysis Methods
,”
Int. J. Hydrogen Energy
,
24
(
7
), pp.
613
624
.
26.
Perkins
,
C.
, and
Weimer
,
A. W.
, 2009, “
Solar Thermal Production of Renewable Hydrogen
,”
AIChE J.
,
55
(
2
), pp.
286
293
.
27.
Pregger
,
T.
,
Graf
,
D.
,
Krewitt
,
W.
,
Sattler
,
C.
,
Roeb
,
M.
, and
Moller
,
S.
, 2009, “
Prospects of Solar Thermal Hydrogen Production Processes
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4256
4267
.
28.
Adams
,
R.
, 2007, “
Booming World Carbon Black Demand but Price Rises Fail to Keep Pace With Rising Gas and Feedstock Costs
,”
Focus Pigm.
,
3
, pp.
1
2
.
You do not currently have access to this content.