Dry methane reforming with carbon dioxide in a directly irradiated particle receiver seeded with carbon black is presented in this study. Carbon particles were entrained in the reacting gases and acted as heat transfer and reaction surface. The reactions were not catalyzed by a metal catalyst. The molar ratio between the entrained carbon particles and the working gases (Ar, CO2, and CH4) was 4–7 mmol carbon/mol gas. The temperature of the reforming experiments varied from 750°C to 1450°C with CO2/CH4 ratios varying from 1:1 to 1:6. Experimental results show that methane reacts at lower temperatures than expected for its thermal decomposition; this indicates that the decomposing reaction is enhanced by the presence of the carbon black particles. At 1170°C 90% of the methane reacted in the receiver during a residence time of 0.3 s. The reaction between carbon dioxide and carbon black is faster than is documented in the literature, but the reaction rate does not seem to change if only carbon dioxide and carbon black are present in the receiver, compared with experiments where methane is also part of the gas mixture. The experimental results indicate that a high solar flux, i.e., about 2500kW/m2 or higher, significantly accelerates the reaction rate of methane decomposition. Total or partial blockage of the solar radiation reduced the yield by about 50%, compared with tests when the receiver was exposed to the full solar radiation flux, at the same operating temperature.

1.
Epstein
,
M.
, and
Spiewak
,
I.
, 1994,”
Design and Operation of the Weizmann Institute 480 kW Solar Reformer in an Energy Storage Cycle
,”
Seventh International Symposium on Solar Thermal Concentrating Technologies
, Moscow, Russia.
2.
Moeller
,
S.
,
Buck
,
R.
,
Tamme
,
R.
,
Epstein
,
M.
,
Liebermann
,
D.
, and
Meri
,
M.
, 2003, “
Steam Reforming of Methane Rich Gas in a Solar Reactor
,”
First European Hydrogen Energy Conference
, Grenoble, France.
3.
Anikeev
,
V. I.
,
Parmon
,
V. N.
,
Kirillov
,
V. A.
, and
Zamaraev
,
K. I.
, 1990, “
Theoretical and Experimental Studies of Solar Catalytic Power Plants Based on Reversible Reactions With Participation of Methane and Synthesis Gas
,”
Int. J. Hydrogen Energy
0360-3199,
15
(
4
), pp.
275
286
.
4.
Muir
,
J. F.
,
Hogan
,
R. E.
,
Skocypec
,
R. D.
, and
Buck
,
R.
, 1994, “
Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish: I—Test and Analysis
,”
Sol. Energy
0038-092X,
52
, pp.
467
477
.
5.
Kodama
,
T.
,
Isobe
,
Y.
,
Kondoh
,
Y.
,
Yamaguchi
,
S. K.
, and
Shimizu
,
I.
, 2004, “
Ni/Ceramic/Molten-Salt Composite Catalyst With High-Temperature Thermal Storage for Use in Solar Reforming Processes
,”
Energy
0360-5442,
29
(
5–6
), pp.
895
903
.
6.
Fraenkel
,
D.
,
Levitan
,
R.
, and
Levy
,
M.
, 1986, “
A Solar Thermochemical Pipe Based on the CO2–CH4 (1:1) System
,”
Int. J. Hydrogen Energy
0360-3199,
11
(
4
), pp.
267
277
.
7.
Levy
,
M.
,
Levitan
,
R.
,
Rosin
,
H.
, and
Rubin
,
R.
, 1993, “
Solar Energy Storage Via a Closed-Loop Chemical Heat Pipe
,”
Sol. Energy
0038-092X,
50
, pp.
179
189
.
8.
Berman
,
A.
,
Karn
,
R. K.
, and
Epstein
,
M.
, 2006, “
A New Catalyst System for High-Temperature Solar Reforming of Methane
,”
Energy Fuels
,
20
, pp.
455
462
. 0887-0624
9.
Paripatyadar
,
S. A.
, and
Richardson
,
J. T.
, 1988, “
Cyclic Performance of a Sodium Heat Pipe Solar Reformer
,”
Sol. Energy
,
41
(
5
), pp.
475
485
. 0038-092X
10.
Diver
,
R. B.
,
Fish
,
J. D.
,
Levitan
,
R.
,
Levy
,
M.
,
Meirovitch
,
E.
,
Rosin
,
H.
,
Paripatyadar
,
S. A.
, and
Richardson
,
J. T.
, 1992, “
Solar Test of an Integrated Sodium Reflux Heat Pipe Receiver/Reactor for Thermochemical Energy Transport
,”
Sol. Energy
0038-092X,
48
(
1
), pp.
21
30
.
11.
Dahl
,
J. K.
,
Weimer
,
A. W.
,
Lewandowski
,
A.
,
Bingham
,
C.
,
Bruetsch
,
F.
, and
Steinfeld
,
A.
, 2004, “
Dry Reforming of Methane Using a Solar-Thermal Aerosol Flow Reactor
,”
Ind. Eng. Chem. Res.
0888-5885,
43
(
18
), pp.
5489
5495
.
12.
Levy
,
M.
,
Levitan
,
R.
,
Meirovitch
,
E.
,
Segal
,
A.
,
Rosin
,
H.
, and
Rubin
,
R.
, 1992, “
Chemical Reactions in a Solar Furnace 2: Direct Heating of a Vertical Reactor in an Insulated Receiver. Experiments and Computer Simulations
,”
Sol. Energy
,
48
(
6
), pp.
395
402
. 0038-092X
13.
Levitan
,
R.
,
Rosin
,
H.
, and
Levy
,
M.
, 1989, “
Chemical Reactions in a Solar Furnace—Direct Heating of the Reactor in a Tubular Receiver
,”
Sol. Energy
0038-092X,
42
(
3
), pp.
267
272
.
14.
Kodama
,
T.
,
Kiyama
,
A.
,
Moriyama
,
T.
, and
Mizuno
,
O.
, 2004, “
Solar Methane Reforming Using a New Type of Catalytically Activated Metallic Foam Absorber
,”
ASME J. Sol. Energy Eng.
0199-6231,
126
(
2
), pp.
808
811
.
15.
Levy
,
M.
,
Rubin
,
R.
,
Rosin
,
H.
, and
Levitan
,
R.
, 1992, “
Methane Reforming by Direct Solar Irradiation of the Catalyst
,”
Energy
0360-5442,
17
(
8
), pp.
749
756
.
16.
Woerner
,
A.
, and
Tamme
,
R.
, 1998, “
CO2 Reforming of Methane in a Solar Driven Volumetric Receiver-Reactor
,”
Catal. Today
0920-5861,
46
, pp.
165
174
.
17.
Berman
,
A.
,
Epstein
,
M.
, and
Karni
,
J.
, 1996, “
Development of Kippod Absorber for Solar Reformer of Light Hydrocarbons
,” Ministry of Energy and Infrastructure Department of Research and Development, Paper No. RD-19-96.
18.
Muradov
,
N.
,
Smith
,
F.
, and
T-Raissi
,
A.
, 2005, “
Catalytic Activity of Carbons for Methane Decomposition Reaction
,”
Catal. Today
,
102–103
, pp.
225
233
. 0920-5861
19.
Kim
,
M. H.
,
Lee
,
E. K.
,
Jun
,
J. H.
,
Kong
,
S. J.
,
Han
,
G. Y.
,
Lee
,
B. K.
,
Lee
,
T. -J.
, and
Yoon
,
K. J.
, 2004, “
Hydrogen Production by Catalytic Decomposition of Methane Over Activated Carbons: Kinetic Study
,”
Int. J. Hydrogen Energy
,
29
, pp.
187
193
. 0360-3199
20.
Ingel
,
G.
,
Levy
,
M.
, and
Gordon
,
J.
, 1991, “
Gasification of Oil Shales by Solar Energy
,”
Solar Energy Materials.
,
24
, pp.
478
489
.
21.
Klein
,
H. H.
,
Rubin
,
R.
, and
Karni
,
J.
, 2006, “
Effect of Particle Consumption in a Particle Seeded Solar Receiver
,”
13th Solar PACES International Symposium
, Seville, Spain.
22.
Klein
,
H. H.
,
Karni
,
J.
,
Ben-Zvi
,
R.
, and
Bertocchi
,
R.
, 2007, “
Heat Transfer in a Directly Irradiated for Solid-Gas Reactions
,”
Sol. Energy
0038-092X,
81
(
10
), pp.
1227
1239
.
23.
Klein
,
H. H.
,
Rubin
,
R.
, and
Karni
,
J.
, 2006, “
Generation of a Radiation Absorbing Medium for a Solar Receiver by Elutriation of Fine Particles From a Spouted Bed
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
(
3
), pp.
406
408
.
24.
Schultz
,
C.
,
Koch
,
J. D.
,
Davidson
,
D. F.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
, 2002, “
Ultraviolet Absorption Spectra of Shock-Heated Carbon Dioxide and Water Between 900 and 3050 K
,”
Chem. Phys. Lett.
,
355
, pp.
82
88
. 0009-2614
25.
Oehlschlaeger
,
M. A.
,
Davidson
,
D. F.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
, 2004, “
Ultraviolet Absorption Cross-Section of Hot Carbon Dioxide
,”
Chem. Phys. Lett.
0009-2614,
399
, pp.
490
495
.
26.
Jensen
,
R. J.
,
Guettler
,
R. D.
, and
Lyman
,
J. L.
, 1997, “
Ultraviolet Absorption Spectrum of Hot Carbon Dioxide
,”
Chem. Phys. Lett.
,
277
, pp.
356
360
. 0009-2614
27.
Ergun
,
S.
, 1956, “
Kinetics of the Reaction of Carbon Dioxide With Carbon
,”
J. Phys. Chem.
0022-3654,
60
, pp.
480
485
.
28.
Freund
,
H.
, 1985, “
Kinetics of Carbon Gasification by CO2
,”
Fuel
, (
64
), pp.
657
660
. 0016-2361
29.
Schwaertzler
,
C. G.
, and
Schmoelz
,
P. J. M.
, 1997, “
Thermally Activated Conversion of Methane and Carbon Dioxide Mixtures: Complex C/H/O Modeling
,”
Sol. Energy
,
61
(
1
), pp.
1
4
. 0038-092X
30.
Epstein
,
M.
,
Spiewak
,
I.
,
Segal
,
A.
,
Levy
,
I.
,
Lieberman
,
D.
,
Meri
,
M.
, and
Lerner
,
V.
, 1996, “
Solar Experiments With a Tubular Reformer
,”
Eighth International Symposium on Solar Thermal Concentrating Technologies
, Cologne, Germany,
CF Moeller Verlag
.
31.
Halman
,
M.
, and
Zuckerman
,
K.
, 1987, “
Electroreduction of Carbon-Dioxide to Carbon-Monoxide in Molten LiCl+KCl, LiF+KF+NaF, Li2CO+Na2CO3+K2Co3 and AlCl3+NaCl
,”
J. Electroanal. Chem.
,
235
(
1–2
), pp.
369
375
. 0368-1874
32.
Hunt
,
A.
,
Hodara
,
I.
,
Miller
,
F.
, and
Noring
,
J. E.
, 1988,
Direct Absorption Receivers for Catalyzing Chemical Reactions
,”
Fourth International Symposium On Research, Development and Application of Solar Thermal Technology
, Santa Fe, NM.
33.
Kee
,
R. J.
,
Coltrin
,
M. E.
, and
Glarborg
,
P.
, 2003,
Chemically Reacting Flow: Theory and Practice
,
Wiley
,
New York
.
34.
Levenspiel
,
O.
, 1972,
Chemical Reactions Engineering
,
Wiley
,
New York
.
35.
Trommer
,
D.
,
Hirsch
,
D.
, and
Steinfeld
,
A.
, 2004, “
Kinetic Investigation of the Thermal Decomposition of CH4 by Direct Irradiation of a Vortex-Flow Laden With Carbon Particles
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
6
), pp.
627
633
.
36.
Dahl
,
J. K.
,
Barocas
,
V. H.
,
Clough
,
D. E.
, and
Weimer
,
A. W.
, 2002, “
Intrinsic Kinetics for Rapid Decomposition of Methane in an Aerosol Flow Reactor
,”
Int. J. Hydrogen Energy
0360-3199,
27
, pp.
377
386
.
37.
Abanades
,
S.
, and
Flamant
,
G.
, 2006, “
Solar Hydrogen Production From the Thermal Splitting of Methane in a High Temperature Solar Chemical Reactor
,”
Sol. Energy
,
80
(
10
), pp.
1321
1332
. 0038-092X
38.
Holgate
,
R.
, and
Tester
,
J.
, 1994, “
Oxidation of Hydrogen and Carbon Dioxide in Sub- and Supercritical Water: Reaction Kinetics, Pathways and Water-Density Effects. 2. Elementary Reaction Modeling
,”
J. Phys. Chem.
,
98
, pp.
810
822
. 0022-3654
39.
Bustamante
,
F.
,
Enick
,
R. M.
,
Cugini
,
A. V.
,
Killmeyer
,
R. P.
,
Howard
,
B. H.
,
Rothenberger
,
K. S.
,
Ciocco
,
M. V.
,
Morreale
,
B. D.
,
Chattopadhyay
,
S.
, and
Shi
,
S.
, 2004, “
High-Temperature Kinetics of Homogeneous Reverse Water-Gas Shift Reaction
,”
AIChE J.
0001-1541,
50
(
5
), pp.
1028
1041
.
40.
Bradford
,
B. W.
, 1933, “
The Water-Gas Reaction in Low-Pressure Explosions
,”
J. Chem. Soc.
, pp.
1557
1563
. 0368-1769
41.
Graven
,
W. M.
, and
Long
,
F. J.
, 1954, “
Kinetics and Mechanisms of the Two Opposition Reactions of the Equilibrium CO+H2O⟨-⟩CO2+H2
,”
J. Am. Chem. Soc.
0002-7863,
76
, pp.
2602
2610
.
You do not currently have access to this content.