We developed a method that enables one to correct solar blind pyrometer cavity temperature measurements for the system-sensor reflection error. The method is valid for measurements made on diffusely emitting and reflecting cavity surfaces when there is no participating medium between the pyrometer and the surface of interest. The surfaces’ emissivities must be known. The procedure gives the uncertainty interval associated with the correction. The procedure was validated by measuring surface temperatures in a solar reactor insulated with Yttria-stabilized Zirconia felt receiving concentrated solar radiation. The temperature range of the experimental study was from 1100–1600 K. Temperature measurements made with a pyrometer having a narrow band filter centered at 1.398 μm were compared to temperatures measured with Zirconia felt shielded thermocouples. Uncorrected pyrometer measurements differed from the thermocouple measurements by as much as 350 K. The thermocouple measurements mostly fell within the system-sensor uncertainty interval of the corrected temperature measurements. The uncertainty interval depends both on the number of surfaces probed with the pyrometer and the nature of the solar blind filter. A numerical simulation study showed that a UV filter centered at a wavelength near 0.285 μm gives tighter system-sensor uncertainty intervals than an IR filter centered at 1.398 μm.

1.
Mo¨ller
,
S.
, and
Palumbo
,
R.
,
2001
, “
The development of a solar chemical reactor for the direct thermal dissociation of zinc oxide
,”
J. Sol. Energy Eng.
,
123
(
2
), pp.
83
90
.
2.
Mo¨ller
,
S.
,
2001
, “
Entwicklung eines Reaktors zur solarthermischen Herstellung von Zink aus Zinkoxid zur Energiespeicherung mit Hilfe konzentrierter Sonnenstrahlung
,”
Diss. ETH Nr.
,
14277
14277
.
3.
Haueter
,
P.
,
Mo¨ller
,
S.
,
Palumbo
,
R.
, and
Steinfeld
,
A.
,
1999
, “
The production of zinc by thermal dissociation of Zinc oxide—solar chemical reactor design
,”
Sol. Energy
,
67
, pp.
161
167
.
4.
Steinfeld
,
A.
,
Brack
,
M.
,
Meier
,
A.
,
Weidenkaff
,
A.
, and
Wuillemin
,
D.
,
1998
, “
A solar chemical reactor for the co-production of zinc and synthesis gas
,”
Energy
,
23
, pp.
803
814
.
5.
Kra¨upl
,
S.
, and
Steinfeld
,
A.
,
2001
, “
Pulsed gas feeding for stoichiometric operation of a forced gas-solid vortex flow solar chemical reactor
,”
J. Sol. Energy Eng.
,
123
(
2
), pp.
133
137
.
6.
Kra¨upl
,
S.
, and
Steinfeld
,
A.
,
2001
, “
Experimental investigation of a vortex-flow solar chemical reactor for the combined ZnO-reduction and CH4-reforming
,”
J. Sol. Energy Eng.
,
23
(
3
), pp.
237
243
.
7.
Steinfeld
,
A.
,
Sanders
,
S.
, and
Palumbo
,
R.
,
1999
, “
Design Aspects of Solar Thermochemical Engineering
,”
Sol. Energy
,
65
(
1
), pp.
43
53
.
8.
Schaffner
,
B.
,
Meier
,
A.
,
Wuillemin
,
D.
,
Hoffelner
,
W.
, and
Steinfeld
,
A.
,
2003
, “
Recycling of Hazardous Solid Waste Material Using High-Temperature Solar Process Heat–II. Reactor Design and Experimentation
,”
Environ. Sci. Technol.
,
37
(
1
), pp.
165
170
.
9.
Palumbo
,
R.
,
Keunecke
,
M.
,
Mo¨ller
,
S.
, and
Steinfeld
,
A.
,
2004
, “
Reflections on the Design of Solar Thermal Chemical Reactors: Thoughts in Transformation
,”
Energy–The International Journal
,
29
(
5-6
), pp.
727
744
.
10.
Wieckert
,
C.
,
Palumbo
,
R.
, and
Frommherz
,
U.
,
2004
, “
A Two Cavity Reactor for Solar Chemical Processes: Heat Transfer Model and Application to Carbothermic Reduction of ZnO
,”
Energy–The International Journal
,
29
(
5-6
), pp.
771
787
.
11.
Tschudi
,
H. R.
, and
Schubnell
,
M.
,
1999
, “
Measuring Temperatures in the Presence of External Radiation by Flash Assisted Multiwavelength Pyrometry
,”
Rev. Sci. Instrum.
,
70
, pp.
2719
2727
.
12.
Schubnell
,
M.
, and
Tschudi
,
H. R.
,
1995
, “
Simultaneous measurement of irradiation, temperature, and reflectivity on hot irradiated surfaces
,”
Appl. Phys. A: Mater. Sci. Process.
,
60
, pp.
581
587
.
13.
Schubnell
,
M.
,
Tschudi
,
H. R.
, and
Mu¨ller
,
Chr.
,
1996
, “
Temperature measurements under concentrated radiation
,”
Sol. Energy
,
58
, pp.
69
75
.
14.
Tschudi
,
H.-R.
, and
Morian
,
G.
,
2001
, “
Pyrometric Temperature Measurements in Solar Furnaces
,”
J. Sol. Energy Eng.
,
123
, pp.
164
170
.
15.
Rohner
,
N.
, and
Neumann
,
A.
,
2003
, “
Measurement of high temperatures in the DLR solar furnace by UV-B detection
,”
J. Sol. Energy Eng.
,
125
, pp.
152
158
.
16.
Hernandez
,
D.
, and
Milcent
,
E.
,
1995
, “
Bichromatic Pyro-Reflectometer Using Optical Fibers for in-situ Measurements
,”
J. Phys. III
,
5
, pp.
999
1011
.
17.
Hernandez
,
D.
,
Olade
,
G.
,
Gineste
,
J. M.
, and
Gueymard
,
C.
,
2004
, “
Analysis and Experimental Results of Solar-Blind Temperature Measurements in Solar Furnaces
,”
J. Sol. Energy Eng.
,
126
, pp.
645
653
.
18.
Moffat, R. J., 1993, “Experimental Methods in Heat Transfer,” ASME Professional Development Short Course, National Heat Transfer Conference, Houston Texas.
19.
White, D. R., and Nicholas, J. V., 1992, “Emissivity and reflection errors in radiation thermometry,” American Institute of Physics: Temperature, 6, pp. 917–922.
20.
Saunders, P., 1999, “Reflection Errors in Industrial Radiation Thermometry,” TEMPMEKO, 99 proceedings, Nmi, pp. 631–636.
21.
Kerr
,
C.
, and
Ivey
,
P.
,
2002
, “
An overview of the measurement errors associated with gas turbine aeroengine pyrometer systems
,”
Meas. Sci. Technol.
,
13
, pp.
873
881
.
22.
Saunders
,
P.
,
2000
, “
Reflection errors and uncertainties for dual and multiwavelength pyrometers
,”
High Temp. - High Press.
,
32
, pp.
239
249
.
23.
Saunders
,
P.
, and
White
,
D. R.
,
1995
, “
A theory of reflections for traceable radiation thermometry
,”
Metrologia
,
32
, pp.
1
10
.
24.
Ng, D., and Williams, W. D., 1992, “Full spectrum pyrometry for nongray surface in the presence of interfering radiation,” American Institute of Physics: Temperature, 6, pp. 889–893.
25.
Dixon
,
J.
,
1998
, “
Radiation thermometry
,”
Meas. Sci. Technol.
,
21
, pp.
425
436
.
26.
Grandfield
,
S. D.
,
1978
, “
Method cuts error in radiant tube temperature sensing
,”
Oil & Gas Journal
, May 1, pp.
68
70
.
27.
Lenoir
,
J. M.
,
1969
, “
Furnace Tubes: How Hot?
,”
Hydrocarbon Process.
, October,
pp.
97
103
.
28.
Touloukian Y. S., and DeWitt, D. P., 1972, “Thermal Radiative Properties: Nonmetallic Solids,” Thermophysical Properties of Matter, 8, pp 535, IFI/Plenum, New York-Washington.
29.
Hauete
,
P.
,
Seit
,
T.
, and
Steinfeld
,
A.
,
1999
, “
A New High-Flux Solar Furnace for High-Temperature Thermochemical Research
,”
J. Sol. Energy Eng.
,
121
, pp.
77
80
.
30.
Technical Data Sheet for 240 mm diameter 3 mm thick quartz widow, B. Nussberger, Glasblaserei, ETH-Hoenggerberg, HPF C 106 CH-8093 Zurich, Switzerland.
You do not currently have access to this content.