Abstract

Several on-line identification approaches have been proposed to identify parameters and evolution models of engineering systems and structures when sequential datasets are available via Bayesian inference. In this work, a robust and “tune-free” sampler is proposed to extend one of the sequential Monte Carlo implementations for the identification of time-varying parameters which can be assumed constant within each set of data collected but might vary across different sequences of datasets. The proposed approach involves the implementation of the affine-invariant Ensemble sampler in place of the Metropolis–Hastings sampler to update the samples. An adaptive-tuning algorithm is also proposed to automatically tune the step-size of the affine-invariant ensemble sampler which, in turn, controls the acceptance rate of the samples across iterations. Furthermore, a numerical investigation behind the existence of inherent lower and upper bounds on the acceptance rate, making the algorithm robust by design, is also conducted. The proposed method allows for the off-line and on-line identification of the most probable models under uncertainty. The proposed sampling strategy is first verified against the existing sequential Monte Carlo sampler in a numerical example. Then, it is validated by identifying the time-varying parameters and the most probable model of a nonlinear dynamical system using experimental data.

References

1.
Saad
,
D.
,
2009
,
On-Line Learning in Neural Networks
,
Cambridge University Press
,
Cambridge, UK
.
2.
Lye
,
A.
,
Cicirello
,
A.
, and
Patelli
,
E.
,
2022
, “
An Efficient and Robust Sampler for Bayesian Inference: Transitional Ensemble Markov Chain Monte Carlo
,”
Mech. Syst. Signal Process.
,
167
, p.
108471
.10.1016/j.ymssp.2021.108471
3.
Rocchetta
,
R.
,
Broggi
,
M.
,
Huchet
,
Q.
, and
Patelli
,
E.
,
2018
, “
On-Line Bayesian Model Updating for Structural Health Monitoring
,”
Mech. Syst. Signal Process.
,
103
, pp.
174
195
.10.1016/j.ymssp.2017.10.015
4.
Hu
,
D.
,
Wang
,
W.
,
Zhang
,
X.
, and
Chen
,
K.
,
2021
, “
On-Line Real-Time Mistuning Identification and Model Calibration Method for Rotating Blisks Based on Blade Tip Timing (BTT)
,”
Mech. Syst. Signal Process.
,
147
, p.
107074
.10.1016/j.ymssp.2020.107074
5.
Zhang
,
N.
,
Chen
,
T.
,
Zheng
,
M.
,
Luo
,
L.
, and
Liu
,
P.
,
2020
, “
Real-Time Identification of Vehicle Body Motion-Modes Based on Motion-Mode Energy Method
,”
Mech. Syst. Signal Process.
,
143
, p.
106843
.10.1016/j.ymssp.2020.106843
6.
Xie
,
Z.
, and
Feng
,
J.
,
2012
, “
Real-Time Nonlinear Structural System Identification Via Iterated Unscented Kalman Filter
,”
Mech. Syst. Signal Process.
,
28
, pp.
309
322
.10.1016/j.ymssp.2011.02.005
7.
Li
,
Y.
,
Ding
,
L.
,
Zheng
,
Z.
,
Yang
,
Q.
,
Zhao
,
X.
, and
Liu
,
G.
,
2018
, “
A Multi-Mode Real-Time Terrain Parameter Estimation Method for Wheeled Motion Control of Mobile Robots
,”
Mech. Syst. Signal Process.
,
104
, pp.
758
775
.10.1016/j.ymssp.2017.11.038
8.
Ghaderi
,
P.
, and
Amini
,
F.
,
2020
, “
Development of a New Method for Online Parameter Identification in Seismically Excited Smart Building Structures Using Virtual Synchronization and Adaptive Control Design
,”
Appl. Math. Modell.
,
87
, pp.
203
221
.10.1016/j.apm.2020.05.032
9.
Zhou
,
Y.
,
Popolo
,
A. D.
, and
Chang
,
Z.
,
2020
, “
On the Absence of a Universal Surface Density, and a Maximum Newtonian Acceleration in Dark Matter Haloes: Consequences for MOND
,”
Phys. Dark Univ.
,
28
, p.
100468
.10.1016/j.dark.2020.100468
10.
Sarrka
,
S.
,
2013
,
Bayesian Filtering and Smoothing
, 4th ed.,
Cambridge University Press
,
Cambridge, UK
.
11.
Ou
,
G.
,
Dyke
,
S. J.
, and
Prakash
,
A.
,
2017
, “
Real Time Hybrid Simulation With Online Model Updating: An Analysis of Accuracy
,”
Mech. Syst. Signal Process.
,
84
, pp.
223
240
.10.1016/j.ymssp.2016.06.015
12.
Weng
,
J. H.
, and
Loh
,
C. H.
,
2011
, “
Recursive Subspace Identification for on-Line Tracking of Structural Modal Parameter
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
2923
2937
.10.1016/j.ymssp.2011.05.013
13.
Chen
,
J.
,
Yuan
,
S.
, and
Wang
,
H.
,
2020
, “
On-Line Updating Gaussian Process Measurement Model for Crack Prognosis Using the Particle Filter
,”
Mech. Syst. Signal Process.
,
140
, p.
106646
.10.1016/j.ymssp.2020.106646
14.
Fan
,
X.
, and
Liu
,
Y.
,
2019
, “
Use of Monitored Daily Extreme Stress Data for Performance Prediction of Steel Bridges: Dynamic Linear Models and Gaussian Mixed Particle Filter
,”
Mech. Syst. Signal Process.
,
121
, pp.
841
855
.10.1016/j.ymssp.2018.11.047
15.
Morse
,
L.
,
Khodaei
,
Z. S.
, and
Aliabadi
,
M. H.
,
2018
, “
Reliability Based Impact Localization in Composite Panels Using Bayesian Updating and the Kalman Filter
,”
Mech. Syst. Signal Process.
,
99
, pp.
107
128
.10.1016/j.ymssp.2017.05.047
16.
Huang
,
J.
,
Li
,
X.
,
Zhang
,
F.
, and
Lei
,
Y.
,
2021
, “
Identification of Joint Structural State and Earthquake Input Based on a Generalized Kalman Filter With Unknown Input
,”
Mech. Syst. Signal Process.
,
151
, p.
107362
.10.1016/j.ymssp.2020.107362
17.
Astroza
,
R.
,
Alessandri
,
A.
, and
Conte
,
J. P.
,
2019
, “
A Dual Adaptive Filtering Approach for Nonlinear Finite Element Model Updating Accounting for Modeling Uncertainty
,”
Mech. Syst. Signal Process.
,
115
, pp.
782
800
.10.1016/j.ymssp.2018.06.014
18.
Lund
,
A.
,
Dyke
,
S. J.
,
Song
,
W.
, and
Bilionis
,
I.
,
2020
, “
Identification of an Experimental Nonlinear Energy Sink Device Using the Unscented Kalman Filter
,”
Mech. Syst. Signal Process.
,
136
, p.
106512
.10.1016/j.ymssp.2019.106512
19.
Terejanu
,
G.
,
Singla
,
P.
,
Singh
,
T.
, and
Scott
,
P. D.
,
2011
, “
Adaptive Gaussian Sum Filter for Nonlinear Bayesian Estimation
,”
IEEE Trans. Autom. Control
,
56
(
9
), pp.
2151
2156
.10.1109/TAC.2011.2141550
20.
Wang
,
X.
,
Pan
,
Q.
,
Liang
,
Y.
, and
Li
,
H.
,
2015
, “
Gaussian Sum Approximation Filter for Nonlinear Dynamic Time-Delay System
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
501
517
.10.1007/s11071-015-2171-5
21.
Chen
,
J.
,
Yuan
,
S.
, and
Jin
,
X.
,
2019
, “
On-Line Prognosis of Fatigue Cracking Via a Regularized Particle Filter and Guided Wave Monitoring
,”
Mech. Syst. Signal Process.
,
131
, pp.
1
17
.10.1016/j.ymssp.2019.05.022
22.
Rozas
,
H.
,
Jaramillo
,
F.
,
Perez
,
A.
,
Jimenez
,
D.
,
Orchard
,
M. E.
, and
Medjaher
,
K.
,
2020
, “
A Method for the Reduction of the Computational Cost Associated With the Implementation of Particle-Filter-Based Failure Prognostic Algorithms
,”
Mech. Syst. Signal Process.
,
135
, p.
106421
.10.1016/j.ymssp.2019.106421
23.
Wan
,
E. A.
, and
Merwe
,
R. V. D.
,
2002
,
Kalman Filtering and Neural Network
,
Wiley
,
New York
.
24.
Hur
,
S.
,
2021
, “
Short-Term Wind Speed Prediction Using Extended Kalman Filter and Machine Learning
,”
Energy Rep.
,
7
, pp.
1046
1054
.10.1016/j.egyr.2020.12.020
25.
Kim
,
H.
,
Jin
,
C.
, and
Kim
,
M.
,
2021
, “
Real-Time Estimation of Riser's Deformed Shape Using Inclinometers and Extended Kalman Filter
,”
Mar. Struct.
,
7
, p.
102933
.10.1016/j.marstruc.2021.102933
26.
Terejanu
,
G.
,
Singla
,
P.
,
Singh
,
T.
, and
Scott
,
P. D.
,
2008
, “
A Novel Gaussian Sum Filter Method for Accurate Solution to the Nonlinear Filtering Problem
,”
Proceedings of the 11th International Conference on Information Fusion
, Vol. 1, Cologne, Germany, pp.
1
8
.
27.
Ristic
,
B.
,
Arulampalam
,
S.
, and
Gordon
,
N.
,
2004
,
Beyond the Kalman Filter: Particle Filters for Tracking Applications
,
Artech House
,
Boston, MA
.
28.
Au
,
S. K.
, and
Beck
,
J. L.
,
2003
, “
Important Sampling in High Dimensions
,”
Struct. Saf.
,
25
(
2
), pp.
139
163
.10.1016/S0167-4730(02)00047-4
29.
Lye
,
A.
,
Cicirello
,
A.
, and
Patelli
,
E.
,
2021
, “
Sampling Methods for Solving Bayesian Model Updating Problems: A Tutorial
,”
Mech. Syst. Signal Process.
,
159
, p.
107760
.10.1016/j.ymssp.2021.107760
30.
Tatsis
,
K. E.
,
Dertimanis
,
V. K.
, and
Chatzi
,
E. N.
,
2022
, “
Sequential Bayesian Inference for Uncertain Nonlinear Dynamic Systems: A Tutorial
,”
J. Struct. Dyn.
,
1
, pp.
236
262
.10.25518/2684-6500.107
31.
Chopin
,
N.
,
2002
, “
A Sequential Particle Filter Method for Static Models
,”
Biometrika
,
89
(
3
), pp.
539
552
.10.1093/biomet/89.3.539
32.
Moral
,
P. D.
,
Doucet
,
A.
, and
Jasra
,
A.
,
2006
, “
Sequential Monte Carlo Samplers
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.
),
68
(
3
), pp.
411
436
.10.1111/j.1467-9868.2006.00553.x
33.
Zhu
,
G.
,
Li
,
X.
,
Ma
,
J.
,
Wang
,
Y.
,
Liu
,
S.
,
Huang
,
C.
,
Zhang
,
K.
, and
Hu
,
X.
,
2018
, “
A New Moving Strategy for the Sequential Monte Carlo Approach in Optimizing the Hydrological Model Parameters
,”
Adv. Water Resour.
,
114
, pp.
164
179
.10.1016/j.advwatres.2018.02.007
34.
Cappe
,
O.
,
Godsill
,
S. J.
, and
Moulines
,
E.
,
2007
, “
An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo
,”
Proc. IEEE
,
95
(
5
), pp.
899
924
.10.1109/JPROC.2007.893250
35.
Olsson
,
J.
,
Cappe
,
O.
,
Douc
,
R.
, and
Moulines
,
E.
,
2008
, “
Sequential Monte Carlo Smoothing With Application to Parameter Estimation in Nonlinear State Space Models
,”
Bernoulli
,
14
(
1
), pp.
155
179
.10.3150/07-BEJ6150
36.
Frank
,
O.
,
Nieto
,
J.
,
Guivant
,
J.
, and
Scheding
,
S.
,
2003
, “
Multiple Target Tracking Using Sequential Monte Carlo Methods and Statistical Data Association
,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Vol.
3
, Las Vegas, NV, Oct. 27–31, pp.
2718
2723
.10.1109/IROS.2003.1249281
37.
Shields
,
M. D.
,
Giovanis
,
D. G.
, and
Sundar
,
V. S.
,
2021
, “
Subset Simulation for Problems With Strongly Non-Gaussian, Highly Anisotropic, and Degenerate Distributions
,”
Comput. Struct.
,
245
, p.
106431
.10.1016/j.compstruc.2020.106431
38.
Betz
,
W.
,
Papaioannou
,
I.
, and
Straub
,
D.
,
2016
, “
Transitional Markov Chain Monte Carlo: Observations and Improvements
,”
J. Eng. Mech.
,
142
(
5
), p. 04016016.10.1061/(ASCE)EM.1943-7889.0001066
39.
Marino
,
L.
, and
Cicirello
,
A.
,
2020
, “
Experimental Investigation of a Single-Degree-of-Freedom System With Coulomb Friction
,”
Nonlinear Dyn.
,
99
(
3
), pp.
1781
1799
.10.1007/s11071-019-05443-2
40.
Marino
,
L.
,
Cicirello
,
A.
, and
Hills
,
D. A.
,
2019
, “
Displacement Transmissibility of a Coulomb Friction Oscillator Subject to Joined Base-Wall Motion
,”
Nonlinear Dyn.
,
98
(
4
), pp.
2595
2612
.10.1007/s11071-019-04983-x
41.
Beck
,
J. L.
, and
Katafygiotis
,
L. S.
,
1998
, “
Updating Models and Their Uncertainties. I: Bayesian Statistical Framework
,”
J. Eng. Mech.
,
124
(
4
), pp.
455
461
.10.1061/(ASCE)0733-9399(1998)124:4(455)
42.
Katafygiotis
,
L. S.
, and
Beck
,
J. L.
,
1998
, “
Updating Models and Their Uncertainties. II: Model Identifiability
,”
J. Eng. Mech.
,
124
(
4
), pp.
463
467
.10.1061/(ASCE)0733-9399(1998)124:4(463)
43.
Doucet
,
A.
,
de Freitas
,
N.
,
Gordon
,
N.
, and
Smith
,
A.
,
2001
,
Sequential Monte Carlo Methods in Practice
,
Springer
,
New York
.
44.
Drovandi
,
C. C.
,
McGree
,
J. M.
, and
Pettitt
,
A. N.
,
2014
, “
A Sequential Monte Carlo Algorithm to Incorporate Model Uncertainty in Bayesian Sequential Design
,”
J. Comput. Graph. Stat.
,
23
(
1
), pp.
3
24
.10.1080/10618600.2012.730083
45.
Nguyen
,
T. L. T.
,
Septier
,
F.
,
Peters
,
G. W.
, and
Delignon
,
Y.
,
2013
, “
Bayesian Model Selection and Parameter Estimation in Penalized Regression Model Using SMC Samplers
,” Proceedings of 21st European Signal Processing Conference (
EUSIPCO 2013
), Vol.
1
, Marrakech, Morocco, Sept. 9–13, pp.
1
5
.https://ieeexplore.ieee.org/document/6811777
46.
Toni
,
T.
,
Welch
,
D.
,
Strelkowa
,
N.
,
Ipsen
,
A.
, and
Stumpf
,
M. P.
,
2009
, “
Approximate Bayesian Computation Scheme for Parameter Inference and Model Selection in Dynamical Systems
,”
J. R. Soc. Interface
,
6
(
31
), pp.
187
202
.10.1098/rsif.2008.0172
47.
Urteaga
,
I.
,
Bugallo
,
M. F.
, and
Djuric
,
P. M.
,
2016
, “
Sequential Monte Carlo Methods Under Model Uncertainty
,” Proceedings of IEEE Statistical Signal Processing Workshop (
SSP
), Palma de Mallorca, Spain, June 26–29, pp.
1
5
.10.1109/SSP.2016.7551747
48.
Zhou
,
Y.
,
Johansen
,
A. M.
, and
Aston
,
J. A. D.
,
2016
, “
Toward Automatic Model Comparison: An Adaptive Sequential Monte Carlo Approach
,”
J. Comput. Graph. Stat.
,
25
(
3
), pp.
701
726
.10.1080/10618600.2015.1060885
49.
Moffa
,
G.
, and
Kuipers
,
J.
,
2014
, “
Sequential Monte Carlo EM for Multivariate Probit Models
,”
Comput. Stat. Data Anal.
,
72
, pp.
252
272
.10.1016/j.csda.2013.10.019
50.
Moral
,
P. D.
,
Doucet
,
A.
, and
Jasra
,
A.
,
2007
, “
Sequential Monte Carlo for Bayesian Computations
,”
Proceedings of the Eight Valencia International Meeting, Benidorm, Spain
, June 2–6, pp.
1
34
.https://www.researchgate.net/publication/228626697_Sequential_Monte_Carlo_for_Bayesian_Computation
51.
Ching
,
J. Y.
, and
Chen
,
Y. C.
,
2007
, “
Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging
,”
J. Eng. Mech.
,
133
(
7
), pp.
816
832
.10.1061/(ASCE)0733-9399(2007)133:7(816)
52.
Moral
,
P. D.
,
Doucet
,
A.
, and
Jasra
,
A.
,
2012
, “
On Adaptive Resampling Strategies for Sequential Monte Carlo Methods
,”
Bernoulli
,
18
(
1
), pp.
252
278
.10.3150/10-BEJ335
53.
Hastings
,
W. K.
,
1970
, “
Monte Carlo Sampling Methods Using Markov Chains and Their Applications
,”
Biometrika
,
57
(
1
), pp.
97
109
.10.1093/biomet/57.1.97
54.
Martino
,
L.
, and
Elvira
,
V.
,
2017
, “
Metropolis Sampling
,”
Wiley StatsRef: Statistics Reference Online
, Wiley, Hoboken, NJ, pp.
1
18
.
55.
Green
,
P.
, and
Maskell
,
S.
,
2017
, “
Estimating the Parameters of Dynamical Systems From Big Data Using Sequential Monte Carlo Samplers
,”
Mech. Syst. Signal Process.
,
93
, pp.
379
396
.10.1016/j.ymssp.2016.12.023
56.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution – A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.10.1023/A:1008202821328
57.
Bognanni
,
M.
, and
Zito
,
J.
,
2020
, “
Sequential Bayesian Inference for Vector Autoregressions With Stochastic Volatility
,”
J. Econ. Dyn. Control
,
113
, p.
103851
.10.1016/j.jedc.2020.103851
58.
Kantas
,
N.
,
Beskos
,
A.
, and
Jasra
,
A.
,
2014
, “
Sequential Monte Carlo Methods for High-Dimensional Inverse Problems: A Case Study for the Navier-Stokes Equations
,”
SIAM/ASA J. Uncert. Quantif.
,
2
(
1
), pp.
464
489
.10.1137/130930364
59.
Chib
,
S.
,
2001
, “
Markov Chain Monte Carlo Methods: Computation and Inference
,”
Handbook of Econometrics
, Vol.
5
, Elsevier, The Netherlands, pp.
3569
3649
.10.1016/S1573-4412(01)05010-3
60.
Goodman
,
J.
, and
Weare
,
J.
,
2010
, “
Ensemble Samplers With Affine Invariance
,”
Commun. Appl. Math. Comput. Sci.
,
5
(
1
), pp.
65
80
.10.2140/camcos.2010.5.65
61.
Gallier
,
J. H.
,
2012
,
Geometric Methods and Applications: For Computer Science and Engineering
,
Springer Science and Business Media
, Germany.
62.
Wang
,
Y.
, and
Solomon
,
J.
,
2019
, “
Intrinsic and Extrinsic Operators for Shape Analysis
,”
Handbook of Numerical Analysis Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2
, North Holland, The Netherlands, pp.
41
115
.
63.
Foreman-Mackey
,
D.
,
Hogg
,
D. W.
,
Lang
,
D.
, and
Goodman
,
J.
,
2013
, “
Emcee: The Mcmc Hammer
,”
Publ. Astron. Soc. Pac.
,
125
(
925
), pp.
306
312
.10.1086/670067
64.
Lampart
,
T.
,
2012
, “
Implementation and Performance Comparison of an Ensemble Sampler With Affine Invariance
,” MOSAIC Group, Institute of Theoretical Computer Science, Department of Computer Science, ETH Zurich, Report.
65.
Iglesias
,
M.
,
Park
,
M.
, and
Tretyakov
,
M. V.
,
2018
, “
Bayesian Inversion in Resin Transfer Molding
,”
Inverse Probl.
,
34
(
10
), p.
105002
.10.1088/1361-6420/aad1cc
66.
Roberts
,
G. O.
,
Gelman
,
A.
, and
Gilks
,
W. R.
,
1997
, “
Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms
,”
Ann. Appl. Probab.
,
7
(
1
), pp.
110
120
.10.1214/aoap/1034625254
67.
Hou
,
F.
,
Goodman
,
J.
,
Hogg
,
D. W.
,
Weare
,
J.
, and
Schwab
,
C.
,
2012
, “
An Affine-Invariant Sampler for Exoplanet Fitting and Discovery in Radial Velocity Data
,”
Astrophys. J.
,
745
(
2
), p.
198
.10.1088/0004-637X/745/2/198
68.
Lye
,
A.
,
Cicirello
,
A.
, and
Patelli
,
E.
,
2022
, “
On-Line Bayesian Inference for Structural Health Monitoring Under Model Uncertainty Using Sequential Ensemble Monte Carlo
,”
Proceedings of the 13th International Conference on Structural Safety and Reliability
, Vol.
1
, Shanghai, China, Sept.
13
17
.https://livrepository.liverpool.ac.uk/3152784/
69.
Den-Hartog
,
J. P.
,
1930
, “
Forced Vibrations With Combined Viscous and Coulomb Damping
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
9
(
59
), pp.
801
817
.10.1080/14786443008565051
70.
Heideman
,
M.
,
Johnson
,
D.
, and
Burrus
,
C.
,
1984
, “
Gauss and the History of the Fast Fourier Transform
,”
IEEE ASSP Mag.
,
1
(
4
), pp.
14
21
.10.1109/MASSP.1984.1162257
71.
Loan
,
C. V.
,
1992
,
Computational Frameworks for the Fast Fourier Transform
,
Siam
,
Switzerland
.
72.
Bayes
,
T. P.
,
1763
, “
LII. An Essay Towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S
,”
Philos. Trans. R. Soc. London
,
53
, pp.
370
418
.10.1098/rstl.1763.0053
73.
Robert
,
C. P.
, and
Casella
,
G.
,
2013
,
Monte Carlo Statistical Methods
, 2nd ed.,
Springer Science & Business Media
, Germany.
74.
Eftekhar-Azam
,
S.
,
Mariani
,
S.
, and
Attari
,
N. K. A.
,
2017
, “
Online Damage Detection Via a Synergy of Proper Orthogonal Decomposition and Recursive Bayesian Filters
,”
Nonlinear Dyn.
,
89
(
2
), pp.
1489
1511
.10.1007/s11071-017-3530-1
75.
Schon
,
T. B.
,
Lindsten
,
F.
,
Dahlin
,
J.
,
Wagberg
,
J.
,
Naesseth
,
C. A.
,
Svensson
,
A.
, and
Dai
,
L.
,
2015
, “
Sequential Monte Carlo Methods for System Identification
,”
IFAC-PapersOnLine
,
48
(
28
), pp.
775
786
.10.1016/j.ifacol.2015.12.224
76.
Hammersley
,
J. M.
, and
Handscomb
,
D. C.
,
1964
,
Monte Carlo Methods
,
Springer
,
Netherlands
.
77.
Silverman
,
B. W.
,
Cox
,
D. R.
, and
Hinkley
,
D. V.
,
1986
,
Density Estimation for Statistics and Data Analysis
, 1st ed.,
Taylor and Francis
, UK.
You do not currently have access to this content.