Abstract

Military operations in Iraq and Afghanistan have resulted in the increased exposure of military personnel to explosive threats. Combat-related pelvic fractures are a relatively new battlefield injury that poses a serious threat to military personnel. Injury prediction for these events continues to be a challenge due to the limited availability of blast-specific test studies and the use of established automotive-based injury criteria that do not directly translate to combat-related exposures. The objective of this study is to evaluate the pelvic response of the global human body models consortium (GHBMC) 50th percentile detailed male model (v4.3) in under body blast (UBB) loading scenarios. Nine simulations were conducted with mild or enhanced threat levels, and nominal or obtuse occupant positions. Cross-sectional force outputs from the superior pubic ramus (SPR), ilium, and sacroiliac (SI) regions were evaluated using previously developed injury risk curves (IRC). Additionally, maximum principal strain (MPS) data were extracted from the pelvic cortical bone elements. Results showed that shear force was the best predictor of fracture for the ischial and SI regions, while axial force was the best predictor for the SPR region. These outcomes were consistent with the load path of the simulated UBB events. The obtuse posture had higher peak force values for injurious and noninjurious outcomes for the SPR and SI region. The nominal posture had higher peak force values for noninjurious outcomes in the ischial region. These outcomes were supported by the MPS response present in these postures.

References

1.
Dyer
,
G. S. M.
, and
Vrahas
,
M. S.
,
2006
, “
Review of the Pathophysiology and Acute Management of Haemorrhage in Pelvic Fracture
,”
Injury, Int. J. Case Injured
,
37
(
7
), pp.
602
613
.10.1016/j.injury.2005.09.007
2.
Dalal
,
S. A.
,
Burgess
,
A. R.
,
Siegel
,
J. H.
,
Young
,
J. W.
,
Brumback
,
R. J.
,
Poka
,
A.
,
Dunham
,
C. M.
,
Gens
,
D.
, and
Bathon
,
H.
,
1989
, “
Pelvic Fracture in Multiple Trauma: Classification by Mechanism is Key to Pattern of Organ Injury, Resuscitative, Requirements, and Outcome
,”
J. Trauma
,
29
(
7
), pp.
981
1001
.10.1097/00005373-198907000-00012
3.
Burgess
,
A. R.
,
Eastridge
,
B. J.
,
Young
,
J. W. R.
,
Ellison
,
T. S.
,
Ellison
,
P. S.
, Jr.
Poka
,
A.
,
Bathon
,
G. H.
, and
Brumback
,
R. J.
,
1990
, “
Pelvic Ring Disruptions: Effective Classification System and Treatment Protocols
,”
J. Trauma
,
30
(
7
), pp.
848
856
.10.1097/00005373-199007000-00015
4.
White
,
C. E.
,
Hsu
,
J. R.
, and
Holcomb
,
J. B.
,
2009
, “
Haemodynamically Unstable Pelvic Fractures
,”
Injury
,
40
(
10
), pp.
1023
1030
.10.1016/j.injury.2008.11.023
5.
Balazs
,
G. C.
, and
D'Alleyrand
,
J.-C. G.
,
2018
, “
Blast-Related Pelvic Fractures
,”
Managing Dismounted Complex Blast Injuries in Military and Civilian Settings
, 1st ed.,
J. M.
Galante
,
M. J.
Martin
,
C. J.
Rodriguez
,
W. T.
Gordon
, eds.,
Springer International Publishing AG
,
Cham, Switzerland
.
6.
Webster
,
C.
, and
Clasper
,
J.
,
2016
, “
Pelvic Blast Injury
,”
Blast Injury Science and Engineering: A Guide or Clinicians and Researchers
, 1st ed.,
A. M. J.
Bull
,
J.
Clasper
,
P. F.
Mahoney
, eds.,
Springer International Publishing AG
,
Cham, Switzerland
.
7.
Rowe
,
S. A.
,
Sochor
,
M. S.
,
Staples
,
K. S.
,
Wahl
,
W. L.
, and
Wang
,
S. C.
,
2004
, “
Pelvic Ring Fractures: Implications of Vehicle Design, Crash Type, and Occupant Characteristics
,”
Surgery
,
136
(
4
), pp.
842
847
.10.1016/j.surg.2004.07.003
8.
Vasquez
,
K. B.
,
Brozoski
,
F. T.
,
Logsdon
,
K. P.
, and
Chancey
,
V. C.
,
2018
, “
Retrospective Analysis of Injuries in Underbody Blast Events, 2007-2010
,”
Military Med.
,
183
(
suppl_1
), pp.
347
352
.10.1093/milmed/usx216
9.
Ramasamy
,
A.
,
Evans
,
S.
,
Kendrew
,
J. M.
, and
Cooper
,
J.
,
2012
, “
The Open Blast Pelvis: The Significant Burden of Management
,”
J. Bone Jt. Surg.
,
94-B
(
6
), pp.
829
835
.10.1302/0301-620X.94B6.28359
10.
Balzano
,
F. L.
, and
Hudak
,
S. J.
,
2018
, “
Military Genitourinary Injuries: Past, Present, and Future
,”
Transl. Androl. Urol.
,
7
(
4
), pp.
646
647
.10.21037/tau.2018.04.05
11.
Owens
,
B. D.
,
Kragh
,
J. F.
, Jr.
,
Wenke
,
J. F.
,
Macaitis
,
J.
,
Wade
,
C. E.
, and
Holcomb
,
J. B.
,
2008
, “
Combat Wounds in Operation Iraqi Freedom and Operation Enduring Freedom
,”
J. Trauma Injury, Infection, Crit. Care
,
64
(
2
), pp.
295
299
.10.1097/TA.0b013e318163b875
12.
Yoganandan
,
N.
,
Stemper
,
B. D.
,
Pintar
,
F. A.
,
Maiman
,
D. J.
,
McEntire
,
B. J.
, and
Chancey
,
V. C.
,
2013
, “
Cervical Spine Injury Biomechanics: Applications for Under Body Blast Loadings in Military Environments
,”
Clin. Biomech.
,
28
(
6
), pp.
602
609
.10.1016/j.clinbiomech.2013.05.007
13.
McGuire
,
R.
,
Hepper
,
A.
, and
Harrison
,
K.
,
2019
, “
From Northern Ireland to Afghanistan: Half a Century of Blast Injuries
,”
J. R. Army Med. Corps.
,
165
(
1
), pp.
27
32
.10.1136/jramc-2017-000892
14.
Tarmey
,
N. T.
, and
Kirkman
,
E.
,
2016
, “
Coagulopathy and Inflammation: An Overview of Blast Effects
,”
Blast Injury Science and Engineering: A Guide or Clinicians and Researchers
, 1st ed.,
A. M. J.
Bull
,
J.
Clasper
,
P. F.
Mahoney
, eds.,
Springer International Publishing AG
,
Cham, Switzerland
.
15.
Katsoulis
,
E.
,
Drakoulakis
,
E.
, and
Giannoudis
,
P. V.
,
2005
, “
Mini-Symposium: Pelvic Fracture (Iii) Management of Open Pelvic Fractures
,”
Curr. Orthop.
,
19
(
5
), pp.
345
353
.10.1016/j.cuor.2005.06.008
16.
Pedersen
,
A.
,
Stinner
,
D. J.
,
McLaughlin
,
H. C.
,
Bailey
,
J. R.
,
Walter
,
J. R.
, and
Hsu
,
J. R.
,
2015
, “
Characteristics of Genitourinary Injuries Associated With Pelvic Fractures During Operation Iraqi Freedom and Operation Enduring Freedom
,”
Military Med.
,
180
(
3S
), pp.
64
67
.10.7205/MILMED-D-14-00410
17.
Stephen
,
D. J. G.
,
2003
, “
(ii) Management of High-Energy Pelvic Fractures
,”
Curr. Orthop.
,
17
(
5
), pp.
335
345
.10.1016/S0268-0890(03)00108-7
18.
Bailey
,
J. R.
,
Stinner
,
D. J.
,
Blackborne
,
L. H.
,
Hsu
,
J. R.
, and
Mazurek
,
M. T.
,
2011
, “
Combat-Related Pelvis Fracture in Nonsurvivors
,”
J. Trauma Injury, Infection, Crit. Care
,
71
(
1 Suppl
.), pp.
S58
S61
.10.1097/TA.0b013e31822154d8
19.
Bailey
,
A. M.
,
Christopher
,
J. J.
,
Brozoski
,
F.
, and
Salzar
,
R. S.
,
2015
, “
Post Mortem Human Surrogate Injury Response of the Pelvis and Lower Extremities to Simulated Under Body Blast
,”
Ann. Biomed. Eng.
,
43
(
8
), pp.
1907
1917
.10.1007/s10439-014-1211-5
20.
Chancey
,
C.
,
McEntire
,
J.
,
Scherer
,
R.
,
Frounfelker
., and
Tegtmeyer
,
M.
,
2011
, “
Program for Warrior Injury Assessment Manikin (WIAMan)
,” U.S. Army, RDECOM, Aberdeen Proving Ground, MD, accessed June 24, 2019, https://www.army.mil/e2/c/downloads/311784.pdf
21.
Christopher
,
J. J.
,
2012
,
U.Va-CAB Underbody Blast Overview and WIAman Research
,
University of Virginia, Center for Applied Biomechanics
,
Charlottesville, VA
, accessed June 24, 2019, http://safeassn.info/wbc/assets/images/UVA-CAB%20 UBB%20Overview%20and%20WIAMan%20Research_forSAFE distribution.pdf
22.
Yoganandan
,
N.
,
Moore
,
J.
,
Arun
,
M. W. J.
, and
Pintar
,
F. A.
,
2014
, “
Dynamic Responses of Intact Post Mortem Human Surrogates From Inferior-to-Superior Loading at the Pelvis
,”
Stapp Car Crash J.
,
58
, pp.
123
143
.10.4271/2014-22-0005
23.
Danelson
,
K. A.
,
Kemper
,
A. R.
,
Mason
,
M. J.
,
Tegtmeyer
,
M.
,
Swiatkowski
,
S. A.
,
Bolte
,
J. H.
, IV
, and
Hardy
,
W. N.
,
2015
, “
Comparison of ATD to PMHS Response in the Under-Body Blast Environment
,”
Stapp Car Crash J.
,
59, pp.
445
519
.10.4271/2015-22-0017
24.
Marsh
,
J. L.
,
Slongo
,
T. F.
,
Broderick
,
J. S.
,
Creevey
,
W.
,
DeCoster
,
T. A.
,
Sirkin
,
M. S.
,
Ziran
,
B.
,
Henley
,
B.
, and
Audige
,
L.
,
2007
, “
Fracture and Dislocation Classification Compendium–2007: Orthopedic Trauma Association Classification, Database and Outcomes Committee, Pelvis
,”
J. Orthop. Trauma
,
21
(
10 Suppl
), pp.
S59
S67
.10.1097/00005131-200711101-00001
25.
Pietsch
,
H. A.
,
Bosch
,
K. E.
,
Weyland
,
D. R.
,
Spratley
,
E. M.
,
Henderson
,
K. A.
,
Salzar
,
R. S.
,
Smith
,
T. A.
,
Sagara
,
B. M.
,
Demetropoulos
,
C. K.
,
Dooley
,
C. J.
, and
Merkle
,
A. C.
,
2016
, “
Evaluation of WIAMan Technology Demonstrator Biofidelity Relative to Sub-Injurious PMHS Response in Simulated Under-Body Blast Events
,”
Stapp Car Crash J.
,
60, pp.
199
246
.10.4271/2016-22-0009
26.
Iluk
,
A.
,
2014
, “
Estimation of Spine Injury as a Function of Bulletproof Vest Mass un Case of Under Body Blast Load
,”
Proceedings of the International Research Council on the Biomechanics of Injury (IRCOBI) Conference
, Germany, Berlin, pp.
809
819
.
27.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Humm
,
J. R.
,
Maiman
,
D. J.
,
Voo
,
L.
, and
Merkle
,
A.
,
2016
, “
Cervical Spine Injuries, Mechanisms, Stability and AIS Scores From Vertical Loading Applied to Military Environments
,”
Eur. Spine J.
,
25
(
7
), pp.
2193
2201
.10.1007/s00586-016-4536-y
28.
Yoganandan
,
N.
,
Arun
,
M. W. J.
,
Stemper
,
B. D.
,
Pintar
,
F. A.
, and
Maiman
,
D. J.
,
2013
, “
Biomechanics of Human Thoracolumbar Spinal Column Trauma From Vertical Impact Loading
,”
Proceedings of the 57th Annals of Advances in Automotive Medicine (AAAM) Annual Conference
,
QC
,
Canada
, Sept. 23–25, pp.
155
166
.https://pubmed.ncbi.nlm.nih.gov/24406955/
29.
Yoganandan
,
N.
,
Stemper
,
B. D.
,
Baisden
,
J. L.
,
Pintar
,
F. A.
,
Paskoff
,
G. R.
, and
Shender
,
B. S.
,
2015
, “
Effects of Acceleration Level on Lumbar Spine Injuries in Military Populations
,”
Spine J.
,
15
(
6
), pp.
1318
1324
.10.1016/j.spinee.2013.07.486
30.
Possley
,
D. R.
,
Blair
,
J. A.
,
Freedman
,
B. A.
,
Schoenfeld
,
A. J.
,
Lehman
,
R. A.
, and
Hsu
,
J. R.
,
2012
, “
The Effect of Vehicle Protection on Spine Injuries in Military Conflict
,”
Spine J.
,
12
(
9
), pp.
843
848
.10.1016/j.spinee.2011.10.007
31.
Yoganandan
,
N.
,
Chirvi
,
S.
,
Pintar
,
F. A.
,
Uppal
,
H.
,
Schlick
,
M.
,
Banerjee
,
A.
,
Voo
,
L.
,
Merkle
,
A.
, and
Kleinberger
,
M.
,
2016
, “
Foot-Ankle Fractures and Injury Probability Curves From Post-Mortem Human Surrogate Tests
,”
Ann. Biomed. Eng.
,
44
(
10
), pp.
2937
2947
.10.1007/s10439-016-1598-2
32.
Martinez
,
A. A.
,
Chakravarty
,
A. B.
, and
Quenneville
,
C. E.
,
2018
, “
The Effect of Impact Duration on the Axial Force Tolerance of the Isolated Tibia During Automotive and Military Impacts
,”
J. Mech. Behav. Biomed. Mater.
,
78
, pp.
315
320
.10.1016/j.jmbbm.2017.11.013
33.
Henderson
,
K. A.
,
Bailey
,
A. M.
,
Christopher
,
J. J.
,
Brozoski
,
F.
, and
Salzar
,
R. S.
,
2013
, “
Biomechanical Response of the Lower Leg Under High Rate Loading
,”
Proceedings of the IRCOBI Conference
,
Gothenburg
,
Sweden
, Sept. 11–13, pp.
145
157
.http://www.ircobi.org/wordpress/downloads/irc13/pdf_files/24.pdf
34.
Bailey
,
A. M.
,
Perry
,
B. J.
, and
Salzar
,
R. S.
,
2017
, “
Response and Injury of the Human Leg for Axial Impact Durations Applicable to Automotive Intrusion and Underbody Blast Environments
,”
Int. J. Crashworthiness
,
22
(
5
), pp.
479
487
.10.1080/13588265.2017.1281079
35.
McKay
,
B. J.
, and
Bir
,
C. A.
,
2009
, “
Lower Extremity Injury Criteria for Evaluating Military Vehicle Occupant Injury in Underbelly Blast Events
,”
Stapp Car Crash J.
,
53
, pp.
229
249
.10.4271/2009-22-0009
36.
Stemper
,
B. D.
,
Baisden
,
J. L.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
,
DeRosia
,
J.
,
Whitley
,
P.
,
Paskoff
,
G. R.
, and
Shender
,
B. S.
,
2012
, “
Effect of Loading Rate on Injury Patterns During High Rate Vertical Acceleration
,”
Proceedings of the 2012 IRCOBI Conference
,
Dublin
,
Ireland
, Sept. 12-14, pp.
217
223
.
37.
Yang
,
K. H.
,
Hu
,
J.
,
White
,
N. A.
,
King
,
A. I.
,
Chou
,
C. C.
, and
Prasad
,
P.
,
2006
, “
Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference
,”
Stapp Car Crash J.
,
50, pp.
429
490
.10.4271/2006-22-0017
38.
Kraft
,
R. H.
,
Fielding
,
R. A.
,
Lister
,
K.
,
Shirley
,
A.
,
Marler
,
T.
,
Merkle
,
A. C.
,
Przekwas
,
A. J.
,
Tan
,
X. G.
, and
Zhou
,
X.
,
2016
, “
Modeling Skeletal Injuries in Military Scenarios
,”
The Mechanobiology and Mechanophysiology of Military-Related Injuries
, 1st ed.,
A.
Gefen and
Y.
Epstein
, eds.,
Springer International Publishing AG
,
Cham, Switzerland
.
39.
Zhang
,
J. Y.
,
Merkle
,
A. C.
,
Ward
,
E. E.
,
Carneal
,
C. M.
,
Ott
,
K. A.
,
Armiger
,
R. S.
,
Wickwire
,
A. C.
,
Harrigan
,
T. P.
, and
Roberts
,
J. C.
,
2011
, “
A High-Fidelity Model for Lumbar Spine Injury Investigation During Under Body Blast Loading
,”
Proceedings of RTO Human Factors and Medicine Panel (HFM) Symposium
, Halifax, Canada, Oct. 3-5, pp.
1
14
.
40.
Zhang
,
J. Y.
,
Merkle
,
A. C.
,
Carneal
,
C. M.
,
Armiger
,
R. S.
,
Kraft
,
R. H.
,
Ward
,
E. E.
,
Ott
,
K. A.
,
Wickwire
,
A. C.
,
Dooley
,
T. P.
,
Harrigan
,
T. P.
, and
Roberts
,
J. C.
,
2013
, “
Effects of Torso-Borne Mass and Loading Severity on Early Response of the Lumbar Spine Under High-Rate Vertical Loading
,”
Proceedings of the IRCOBI Conference
, Gothenburg, Sweden, Sept. 11–13, pp.
111
123
. http://www.ircobi.org/wordpress/downloads/irc13/pdf_files/19.pdf
41.
Zhang
,
N.
, and
Zhao
,
J.
,
2013
, “
Study of Compression-Related Lumbar Spine Fracture Criteria Using a Full Body FE Human Model
,”
Proceedings of the International Technical Conference on the Enhanced Safety of Vehicles (ESV)
, Seoul, South Korea, May 27–30, pp.
1
12
.https://www.researchgate.net/publication/270899286_STUDY_OF_COMPRESSION-RELATED_LUMBAR_SPINE_FRACTURE_CRITERIA_USING_A_FULL_BODY_FE_HUMAN_MODEL
42.
Pintar
,
F. A.
,
2012
, “
Biomedical Analyses, Tolerance, and Mitigation of Acute and Chronic Trauma
,” U.S. Army Medical Research and Materiel Command (MRMC), Fort Detrick, MD.
43.
Fielding
,
R. A.
,
Kraft
,
R. H.
,
Przekwas
,
A.
, and
Tan
,
X. G.
,
2015
, “
Development of a Lower Extremity Model for Strain Rate Impact Loading
,”
Int. J. Exp. Comput. Biomech.
,
3
(
2
), pp.
161
186
.10.1504/IJECB.2015.070427
44.
Dong
,
L.
,
Zhu
,
F.
,
Jin
,
X.
,
Suresh
,
M.
,
Jiang
,
B.
,
Sevagan
,
G.
,
Cai
,
Y.
,
Li
,
G.
, and
Yang
,
K. H.
,
2013
, “
Blast Effect on the Lower Extremities and Its Mitigation: A Computational Study
,”
J. Mech. Behav. Biomed. Mater.
,
28
, pp.
111
124
.10.1016/j.jmbbm.2013.07.010
45.
Newell
,
N.
,
Salzar
,
R.
,
Bull
,
A. M. J.
, and
Masouros
,
S. D.
,
2016
, “
A Validated Numerical Model of a Lower Limb Surrogate to Investigate Injuries Caused by Under-Vehicle Explosions
,”
J. Biomech.
,
49
(
5
), pp.
710
717
.10.1016/j.jbiomech.2016.02.007
46.
Chanda
,
A.
, and
Callaway
,
C.
,
2018
, “
Computational Modeling of Blast Induced Whole-Body Injury: A Review
,”
J. Med. Eng. Technol.
,
42
(
2
), pp.
88
104
.10.1080/03091902.2018.1432711
47.
Vavalle
,
N. A.
,
Moreno
,
D. P.
,
Rhyne
,
A. C.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2013
, “
Lateral Impact Validation of a Geometrically Accurate Full Body Finite Element Model for Blunt Injury Prediction
,”
Ann. Biomed Eng.
,
41
(
3
), pp.
497
512
.10.1007/s10439-012-0684-3
48.
Vavalle
,
N. A.
,
Davis
,
M. L.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2015
, “
Quantitative Validation of a Human Body Finite Element Model Using Rigid Body Impacts
,”
Ann. Biomed Eng.
,
43
(
9
), pp.
2163
2174
.10.1007/s10439-015-1286-7
49.
Weaver
,
C. M.
, and
Stitzel
,
J. D.
,
2015
, “
Pelvic Response of a Total Human Body Finite Element Model During Simulated Under Body Blast Impacts
,”
Proceedings of the IRCOBI Conference
,
Lyon
,
France
, Sept. 9–11, pp.
731
741
.http://www.ircobi.org/wordpress/downloads/irc15/pdf_files/82.pdf
50.
Gabler
,
L. F.
,
Panzer
,
M. B.
, and
Salzar
,
R. S.
,
2014
, “
High-Rate Mechanical Properties of Human Heel Pad for Simulation of a Blast Loading Condition
,”
Proceedings of the IRCOBI Conference
,
Berlin
,
Germany
, Sept. 10–12, pp.
796
808
.https://www.researchgate.net/publication/288095691_High-rate_mechanical_properties_of_human_heel_pad_for_simulation_of_a_blast_loading_condition
51.
Bailey
,
A. M.
,
Panzer
,
M. B.
, and
Salzar
,
R. S.
,
2014
, “
Development of a Transfer Function for Interpreting Hybrid-III Lower Leg Data From Axial Loading
,”
Proceedings of the IRCOBI Conference
,
Berlin
,
Germany
, Sept. 10–12, pp.
213
223
.http://www.ircobi.org/wordpress/downloads/irc14/pdf_files/28.pdf
52.
Salzar
,
R. S.
,
2013
, “
Development of Injury Thresholds Pertaining to Under-Body Blast
,” U.S. Army MRMC, Fort Detrick, MD.
53.
Weaver
,
C. M.
,
Baker
,
A. M.
,
Davis
,
M. L.
,
Miller
,
A. N.
, and
Stitzel
,
J. D.
,
2018
, “
Finite Element-Based Pelvic Injury Metric Creation and Validation in Lateral Impact for a Human Body Model
,”
ASME J. Biomech. Eng.
,
140
(
6
), p.
061008
.10.1115/1.4039393
54.
Weaver
,
C. M.
,
Miller
,
A. N.
, and
Stitzel
,
J. D.
,
2018
, “
Pelvic Injury Survival Analysis for a Finite Element Human Body Model Using Multiple Data Sets
,”
ASME
Paper No. IMECE2018-88447.10.1115/IMECE2018-88447
55.
Barbat
,
S.
,
Mehall
,
M.
,
Nayak
,
R.
,
Nusholtz
,
G. S.
,
Olds
,
N. M.
,
Shi
,
Y.
,
Stanko
,
W.
,
Wang
,
J. T.
,
Weerappuli
,
P.
,
Xu
,
L.
, and
Yalamanchili
,
K. V.
,
2013
, “
Idealized Vehicle Crash Test Pulses for Advanced Batteries
,”
SAE Int. J. Transp. Saf.
,
1
(
2
), pp.
328
333
.10.4271/2013-01-0764
56.
Saul
,
R. A.
,
2007
, “
NHTSA's Motorcoach Safety Research Crash, Sled, and Static Tests
,”
Dot Hs
,
811
, p.
335
.https://www.nhtsa.gov/DOT/NHTSA/NVS/Vehicle%20Research%20&%20Test%20Center%20(VRTC)/cw/811335.pdf
57.
Martini
,
F.
,
Nath
,
J. L.
, and
Bartholomew
,
E.
,
2015
,
Fundamentals of Anatomy and Physiology
, 10th ed.,
Pearson
,
Boston, MA
.
58.
Gray
,
H.
,
1918
, “
Anatomy of the Human Body
,” Lea and Febiger, Philadelphia, PA, online ed., 2000, accessed June 24, 2019, www.bartleby.com/107/
59.
Guleyupoglu
,
B.
,
Koya
,
B.
, and
Gayzik
,
F. S.
,
2017
, “
Leveraging Human Body Models of Varying Complexity for Computational Efficiency
,”
Proceedings of the 61st STAPP Car Crash Conference
, Charleston, SC, Nov. 13–15.
60.
Bouquet
,
R.
,
Ramet
,
M.
,
Bermond
,
F.
, and
Cesari
,
D.
,
1994
, “
Thoracic and Pelvis Human Response to Impact
,”
Proceedings of the 14th International Technical Conference on the Enhanced Safety of Vehicles (ESV)
, Munich, Germany, May 23-26, pp.
100
109
. https://www.researchgate.net/publication/264472727_Thoracic_and_pelvis_human_response_to_impact
61.
Bouquet
,
R.
,
Ramet
,
M.
,
Bermond
,
F.
,
Caire
,
Y.
,
Talantikite
,
Y.
,
Robin
,
S.
, and
Voiglio
,
E.
,
1998
, “
Pelvis Human Response to Lateral Impact
,”
Proceedings of the 16th International Technical Conference on the Enhanced Safety of Vehicles
, Windsor, ON, May 31–June 4, pp.
1665
1686
.https://www.researchgate.net/publication/264471598_Pelvis_human_response_to_lateral_impact
62.
McMurry
,
T. L.
, and
Poplin
,
G. S.
,
2015
, “
Statistical Considerations in the Development of Injury Risk Functions
,”
Traffic Injury Prev.
,
16
(
6
), pp.
618
626
.10.1080/15389588.2014.991820
63.
Fan
,
J.
,
Upadhye
,
S.
, and
Worster
,
A.
,
2006
, “
Understanding Receiver Operator Characteristic (ROC) Curves
,”
Can. J. Emer. Med.
,
8
(
01
), pp.
19
20
.10.1017/S1481803500013336
64.
Grzybowski
,
M.
, and
Younger
,
J. G.
,
1997
, “
Statistical Methodology: III. Receiver Operating Characteristic (ROC) Curves
,”
4
(
8
), pp.
818
826
.
65.
Osterhoff
,
G.
,
Morgan
,
E. F.
,
Shefelbine
,
S. J.
,
Karim
,
L.
,
McNamara
,
L. M.
, and
Augat
,
P.
,
2016
, “
Bone Mechanical Properties and Changes With Osteoporosis
,”
Injury
,
47
(
Suppl. 2
), pp.
S11
S20
.10.1016/S0020-1383(16)47003-8
You do not currently have access to this content.