Abstract

Pressure systems contain hazardous fluids within industrial processes. Inspection plays a vital role in managing the reliability of these safety-critical systems. It allows engineers to identify, characterize, and manage degradation of pressure vessels, piping, and associated equipment to prevent failure and the associated consequences on people and the environment. Mixed uncertainty can affect decision-making in at least three distinct aspects of inspection practice: inspection planning, inspection data analysis, and integrity assessment. Despite this, the inspection engineering discipline lacks methodologies for handling both aleatory and epistemic uncertainties within analyses, which could be expensively misleading. This paper demonstrates the benefits of applying mixed uncertainty quantification and analysis techniques to pressure vessel inspection and integrity assessment through a worked example, which shows how the epistemic and aleatory uncertainty in inspection data can be represented using an imprecise probability approach. The limitations of empirical data are shown to pose challenges to implementing these techniques in practice, and so practical requirements for a framework for implementing uncertainty analysis methods in inspection are proposed. These include, for example, the ability to generate meaningful yet conservative results from even a limited amount of poor-quality data, while allowing results to be bounded more narrowly as more data is collected, findings from better data are pooled, or engineering judgment and assumptions are applied.

References

1.
O'Connor
,
P. D. T.
,
2006
,
Practical Reliability Engineering
,
Wiley
,
Chichester, UK
.
2.
HSE,
2007
, “
Key Programme 3 – Asset Integrity: A Review of Industry's Progress
,”
HSE, UK Health and Safety Executive Hazardous Installations Directorate
, Bootle, UK, accessed Mar. 18, 2025, https://www.hse.gov.uk/offshore/assets/docs/kp3.pdf
3.
P.
,
Horrocks
,
P.
,
Mansfield
,
D.
,
Thomson
,
J.
,
Parker
,
K.
,
Winter
,
P.
,
2010
, “
Plant Ageing Study Phase 1 Report, Research Report 823
,” Health and Safety Executive, Bootle, UK, accessed Mar. 18, 2025, https://www.hse.gov.uk/research/rrpdf/rr823.pdf
4.
Brown
,
C.
,
Ferson
,
S.
, and
de Angelis
,
M.
,
2022
, “
Analysis of Inspection Records to Evaluate the Prevalence of Ageing in the UK's Industrial Asset Base
,”
Proceedings of the 8th International Symposium on Reliability Engineering and Risk Management
,
Research Publishing
,
Singapore, Hannover, Germany
, pp.
231
237
.
5.
HSE
,
2014
, “
Safety of Pressure Systems: Pressure Systems Safety Regulations 2000, Approved Code of Practice and Guidance, Health and Safety Executive
,”
HSE
,
Sudbury, Suffolk
, UK, accessed Mar. 18, 2025, https://www.hse.gov.uk/pubns/priced/l122.pdf
6.
Stone
,
M.
,
2013
, “
HOIS Recommended Practice for Statistical Analysis of Inspection Data, HOIS(12)R8 Issue 1
,”
HOIS/ESR Technology
, The British Institute of Non-Destructive Testing, Warrington, UK, accessed Mar. 18, 2025, https://www.bindt.org/shopbindt/hois-documents/HOIS-Recommended-Practice-for-Statistical-Analysis-of-Inspection-Data-HOIS-12-R8-Issue-1.html
7.
API
,
2020
, “
API RP 581 3RD ED (A1) (A2) (2020) - Risk-Based Inspection Methodology
,” 3rd ed.,
American Petroleum Institute
,
Washington, DC
.
8.
BSI
,
2018
, “
BSI ISO 31000 - Risk Management - Guidelines
,” BSI, London, UK, accessed Mar. 18, 2025, https://knowledge.bsigroup.com/products/risk-management-guidelines
9.
API
,
2016
, “
API RP 580 - Risk-Based Inspection
,” 3rd ed.,
American Petroleum Institute
,
Washington, DC
.
10.
Tretiak
,
K.
, and
Ferson
,
S.
,
2023
, “
Should Data Ever Be Thrown Away? Pooling Interval-Censored Data Sets With Different Precision
,”
Int. J. Approx. Reason.
,
156
, pp.
114
133
.10.1016/j.ijar.2023.02.007
11.
Leinenbach
,
F.
,
Stumm
,
C.
,
Krieg
,
F.
, and
Schneider
,
A.
,
2024
, “
Information Reuse of Nondestructive Evaluation (NDE) Data Sets
,”
J. Sens. Sens. Syst.
,
13
(
1
), pp.
99
108
.10.5194/jsss-13-99-2024
12.
Vrana
,
J.
, and
Singh
,
R.
,
2021
, “
NDE 4.0—A Design Thinking Perspective
,”
J. Nondestruct. Eval.
,
40
(
1
), pp. 1–24.10.1007/s10921-020-00735-9
13.
Gray
,
A.
,
Wimbush
,
A.
,
De Angelis
,
M.
,
Hristov
,
P. O.
,
Calleja
,
D.
,
Miralles-Dolz
,
E.
, and
Rocchetta
,
R.
,
2022
, “
From Inference to Design: A Comprehensive Framework for Uncertainty Quantification in Engineering With Limited Information
,”
Mech. Syst. Signal Process.
,
165
, p.
108210
.10.1016/j.ymssp.2021.108210
14.
Fox
,
C. R.
, and
Ulkumen
,
G.
,
2011
, “
Distinguishing Two Dimensions of Uncertainty
,”
Essays in Judgment and Decision Making
, W. Brun, G. Kirkebøen, and H. Montgomery, eds.,
Universitetsforlaget, Oslo, Norway
.
15.
TWI
,
2024
, “
What Is the Heat Affected Zone (HAZ)?
,”
TWI
, Cambridge, UK, accessed Nov. 24, 2024, https://www.twi-global.com/technical-knowledge/faqs/what-is-the-heat-affected-zone
16.
Bhandari
,
J.
,
Khan
,
F.
,
Abbassi
,
R.
,
Garaniya
,
V.
, and
Ojeda
,
R.
,
2015
, “
Modelling of Pitting Corrosion in Marine and Offshore Steel Structures – A Technical Review
,”
J. Loss Prev. Process Ind.
,
37
, pp.
39
62
.10.1016/j.jlp.2015.06.008
17.
Conder
,
P.
, and
Stone
,
M.
,
2018
, “
HOIS Guidance for More Effective Pipework Inspection, HOIS-G-010 Issue 1
,”
HOIS/ESR Technology
, Warrington, UK, accessed Mar. 18, 2025, https://www.bindt.org/shopbindt/hois-documents/HOIS-Guidance-for-More-Effective-Pipework-Inspection-HOIS-G-010-Issue-1.html
18.
Ferson
,
S.
,
Kreinovich
,
V.
,
Hajagos
,
J.
,
Oberkampf
,
W.
, and
Ginzburg
,
L.
,
2007
,
Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty
, Sandia National Laboratories, Albuquerque, New Mexico, Report No.
SAND2007-0939
.10.2172/910198
19.
Benstock
,
D.
, and
Cegla
,
F.
,
2017
, “
Extreme Value Analysis (EVA) of Inspection Data and Its Uncertainties
,”
NDT E Int.
,
87
, pp.
68
77
.10.1016/j.ndteint.2017.01.008
20.
Mihaljević
,
M.
,
Markučič
,
D.
,
Runje
,
B.
, and
Keran
,
Z.
,
2019
, “
Measurement Uncertainty Evaluation of Ultrasonic Wall Thickness Measurement
,”
Measurement
,
137
, pp.
179
188
.10.1016/j.measurement.2019.01.027
21.
Kuniewski
,
S.
, and
van der Weide
,
H.
,
2011
, “
The Performance of Sampling Inspections for Localized Deterioration Process
,”
Applications of Statistics and Probability in Civil Engineering
,
M.
Faber
,
J.
Koehler
, and
K.
Nishijima
, eds.,
CRC Press
, London, UK, pp.
2293
2300
.
22.
MIL,
2009
, “
Nondestructive Evaluation System Reliability Assessment, MIL-HDBK-1823 A
,” Department of Defense, Wright-Patterson Air Force Base, Dayton, OH, accessed Nov. 28, 2024, https://statistical-engineering.com/wp-content/uploads/2017/10/MIL-HDBK-1823A2009.pdf
23.
Beer
,
M.
,
Ferson
,
S.
, and
Kreinovich
,
V.
,
2013
, “
Imprecise Probabilities in Engineering Analyses
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
4
29
.10.1016/j.ymssp.2013.01.024
24.
Dann
,
M. R.
, and
Huyse
,
L.
,
2018
, “
The Effect of Inspection Sizing Uncertainty on the Maximum Corrosion Growth in Pipelines
,”
Struct. Saf.
,
70
, pp.
71
81
.10.1016/j.strusafe.2017.10.005
25.
API/ASME
,
2021
, “
API 579/ASME FFS-1 - Fitness-for-Service
,” American Petroleum Institute, Washington DC.
26.
Sikorska
,
J. Z.
,
Hodkiewicz
,
M.
, and
Ma
,
L.
,
2011
, “
Prognostic Modelling Options for Remaining Useful Life Estimation by Industry
,”
Mech. Syst. Signal Process.
,
25
(
5
), pp.
1803
1836
.10.1016/j.ymssp.2010.11.018
27.
Roussak
,
O. V.
, and
Gesser
,
H. D.
,
2012
, “
Corrosion
,”
Applied Chemistry
,
Springer US
,
Boston, MA
, pp.
175
189
.
28.
Shreir
,
L. L.
,
1994
, “
Basic Concepts of Corrosion
,”
Corrosion (Third Edition)
, Vol 1, L. L., Shreir, R. A., Jarman, and G. T., Burstein, eds. , Butterworth-Heinemann, Oxford, UK, pp. 1:3–1:15.10.1016/B978-0-08-052351-4.50008-X
29.
Koch
,
G.
,
Varney
,
J.
,
Thompson
,
N.
,
Moghissi
,
O.
,
Gould
,
M.
, and
Payer
,
J.
,
2016
, “
International Measures of Prevention, Application, and Economics of Corrosion Technologies Study
,”
NACE International
,
Houston, TX
, accessed Nov. 28, 2024, http://impact.nace.org/documents/Nace-International-Report.pdf
30.
Benstock
,
D.
,
2016
, “
Extreme Value Analysis of Ultrasonic Thickness Measurements
,”
Ph.D. thesis
,
Imperial College
, London, UK.https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/non-destructive-evaluation/Benstock-D-2016-PhD-Thesis.pdf
31.
Balch
,
M. S.
,
2012
, “
Mathematical Foundations for a Theory of Confidence Structures
,”
Int. J. Approx. Reason.
,
53
(
7
), pp.
1003
1019
.10.1016/j.ijar.2012.05.006
32.
Ferson
,
S.
,
Kreinovick
,
V.
,
Ginzburg
,
L.
, and
Sentz
,
F.
,
2003
,
Constructing Probability Boxes and Dempster-Shafer Structures
, Sandia National Laboratories, Albuquerque, New Mexico, Report No.
SAND2002-4015
.10.2172/809606
33.
BSI
,
2019
, “
BS EN ISO 16809 Non-Destructive Testing - Ultrasonic Thickness Measurement
,” BSI, London, UK, accessed Mar. 18, 2025, https://knowledge.bsigroup.com/products/non-destructive-testing-ultrasonic-thickness-measurement
34.
Jones
,
M.
, and
Burch
,
S. F.
,
2022
, “
HOIS/NZTC Guidance on Inspection of Uninsulated External Corrosion Scabs – HOIS-G-028 Issue 2
,”
HOIS-G-028 Issue 2
,
The British Institute of Non-Destructive Testing
,
35.
Drury
,
J. C.
,
1997
, “
Corrosion Monitoring and Thickness Measurement – What Are We Doing Wrong?
,”
Insight Non-Destr. Test. Cond. Monit.
,
39
(
1
), pp.
17
23.
https://www.eddyfi.com/doc/Downloadables/ultrasonics_corrosion_pitting-01.pdf
36.
Siegrist
,
J.
,
2011
, “
Mixing Good Data With Bad: How to Do It and When You Should Not
,”
Vulnerability, Uncertainty, and Risk
,
American Society of Civil Engineers
,
Hyattsville, MD
, pp.
368
373
.10.1061/41170(400)45
37.
Vanaei
,
H. R.
,
Eslami
,
A.
, and
Egbewande
,
A.
,
2017
, “
A Review on Pipeline Corrosion, in-Line Inspection (ILI), and Corrosion Growth Rate Models
,”
Int. J. Press. Vessels Pip.
,
149
, pp.
43
54
.10.1016/j.ijpvp.2016.11.007
38.
Zhang
,
M. Q.
,
Beer
,
M.
,
Quek
,
S. T.
, and
Choo
,
Y. S.
,
2010
, “
Comparison of Uncertainty Models in Reliability Analysis of Offshore Structures Under Marine Corrosion
,”
Struct. Saf.
,
32
(
6
), pp.
425
432
.10.1016/j.strusafe.2010.04.003
39.
Bury
,
K.
,
1999
,
Statistical Distributions in Engineering
,
Cambridge University Press, Cambridge, UK
.
40.
Bezanson
,
J.
,
Edelman
,
A.
,
Karpinski
,
S.
, and
Shah
,
V. B.
,
2017
, “
Julia: A Fresh Approach to Numerical Computing
,”
SIAM Rev.
,
59
(
1
), pp.
65
98
.10.1137/141000671
41.
F.
,
van der Plas
,
M.
,
Dral
,
P.
,
Berg
,
Π.
,
Γεωργακóπουλος
,
R.
,
Huijzer
,
M.
,
Bocheński
,
A.
,
Mengali
,
C.
,
Burns
,
H.
,
et al.
,
2024
, “
Fonsp/Pluto.Jl: V0.20, 4
,” Zenodo, Genève, Switzerland, accessed Mar. 21, 2025, https://zenodo.org/records/15057907
42.
Ferson
,
S.
, and
Tucker
,
W. T.
,
2003
, “
Probability Bounds Analysis in Environmental Risk Assessments
,”
Applied Biomathematics
,
Setauket, NY
, accessed Nov. 29, 2024, https://www.researchgate.net/publication/240192153_Probability_Bounds_Analysis_in_Environmental_Risk_Assessment
43.
Nadvoretskiy
,
V.
, and
Waters
,
A.
,
2023
, “
Don't Throw Out Your IDMS Data: Use Statistics to Rebuild Trust
,”
Insp. J.
, 29(5), pp. 2–6.https://inspectioneering.com/journal/2023-10-26/10798/dont-throw-out-your-idms-data-use-statistics-to-rebuild-trust
44.
Oberkampf
,
W. L.
, and
Balch
,
M. S.
,
2020
, “
Closure on the Discussion of “Models, Uncertainty, and the Sandia V&V Challenge Problem” (Hazelrigg, G. A., and Klutke, G. A., ASME J. Verif. Valid. Uncert., 2020, 5(1), p. 015501)
,”
ASME J. Verif. Valid. Uncertain. Quantif.
,
5
(
3
), p. 035501.10.1115/1.4048338
45.
Hägele
,
D.
,
Schulz
,
C.
,
Beschle
,
C.
,
Booth
,
H.
,
Butt
,
M.
,
Barth
,
A.
,
Deussen
,
O.
, and
Weiskopf
,
D.
,
2022
, “
Uncertainty Visualization: Fundamentals and Recent Developments
,”
It - Inf. Technol.
,
64
(
4–5
), pp.
121
132
.10.1515/itit-2022-0033
46.
API,
2016
, “API 570 - Piping Inspection Code: In-Service Inspection, Repair, and Alteration of Piping Systems, Fourth Edition, Includes Addendum 1” American Petroleum Institute, Washington, DC.
47.
API
,
2016
, “
API 574 - Inspection Practices for Piping System Components
,”, 4th ed.
American Petroleum Institute
,
Washington, DC
.
48.
Cheng
,
R. C. H.
, and
Iles
,
T. C.
,
1983
, “
Confidence Bands for Cumulative Distribution Functions of Continuous Random Variables
,”
Technometrics
,
25
(
1
), pp.
77
86
.https://stat.cmu.edu/technometrics/80-89/VOL-25-01/v2501077.pdf
49.
Cheng
,
R. C. H.
, and
Lies
,
T. C.
,
1988
, “
One-Sided Confidence Bands for Cumulative Distribution Functions
,”
Technometrics
,
30
(
2
), pp.
155
159
.10.2307/1270160
50.
Lye
,
A.
,
Vechgama
,
W.
,
Sallak
,
M.
,
Destercke
,
S.
,
Ferson
,
S.
, and
Xiao
,
S.
,
2025
, “
Advances in the Reliability Analysis of Coherent Systems Under Limited Data With Confidence Boxes
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part Civ. Eng.
,
11
(
1
), p.
04024074
.10.1061/AJRUA6.RUENG-1380
51.
Destercke
,
S.
, and
Strauss
,
O.
,
2014
, “
Kolmogorov-Smirnov Test for Interval Data
,”
15th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU)
, Montpellier, France, July 15--19, pp.
416
425
.10.1007/978-3-319-08852-5_43
52.
Tretiak
,
K.
,
Schollmeyer
,
G.
, and
Ferson
,
S.
,
2023
, “
Neural Network Model for Imprecise Regression With Interval Dependent Variables
,”
Neural Netw.
,
161
, pp.
550
564
.10.1016/j.neunet.2023.02.005
53.
Sadeghi
,
J.
,
De Angelis
,
M.
, and
Patelli
,
E.
,
2020
, “
Robust Propagation of Probability Boxes by Interval Predictor Models
,”
Struct. Saf.
,
82
, p.
101889
.10.1016/j.strusafe.2019.101889
54.
Rocchetta
,
R.
,
Gao
,
Q.
, and
Petkovic
,
M.
,
2021
, “
Soft-Constrained Interval Predictor Models and Epistemic Reliability Intervals: A New Tool for Uncertainty Quantification With Limited Experimental Data
,”
Mech. Syst. Signal Process.
,
161
, p.
107973
.10.1016/j.ymssp.2021.107973
55.
Ferson
,
S.
,
2019
, “
Prediction and Decision Making From Bad Data
,” Proceedings of the 29th European Safety and Reliability Conference (
ESREL
), Research Publishing Services, Hannover, Germany, Sept. 22–26, pp.
29
29
.10.3850/978-981-11-2724-3_0005-cd
56.
Ellison
,
A. M.
,
Boose
,
E. R.
,
Lerner
,
B. S.
,
Fong
,
E.
, and
Seltzer
,
M.
,
2020
, “
The End-to-End Provenance Project
,”
Patterns
,
1
(
2
), p.
100016
.10.1016/j.patter.2020.100016
You do not currently have access to this content.