Abstract

In this study, an attempt is made to propose a local approach for fracture analysis of sharp notches under Mode III loading. Under the assumption that the stress concentration factor eigenvalue k* for V-notches under Mode I loading proposed by Yan is valid for V-notches under Mode III loading, in fact, the local approach for fracture analysis of sharp notches under Mode III loading is similar to that under Mode I loading. The experimental verifications by experimental data from the literature show that the attempt is successful. In addition, the experimental verifications show that the empirical equation of determining the fracture toughness proposed by Yan is also suited for Mode III loading. By using the empirical equation, thus, the local approach proposed by Yan and the local approach proposed in this study have a wide of applications for fracture assessment of sharp notches.

References

1.
Neuber
,
H.
,
1936
, “
Zur Theorie Der Technischen Formzahl
,”
Forschg. Ing.-Wes.
,
7
(
6
), pp.
271
274
.10.1007/BF02584908
2.
Neuber
,
H.
,
1958
,
Theory of Notch Stresses: Principles for Exact Calculation of Strength With Reference to Structural Form and Material
, 2nd ed.,
Springer Verlag
,
Berlin
.
3.
Peterson
,
R. E.
,
1959
, “
Notch Sensitivity
,”
Metal Fatigue
,
Sines
,
G.
,
Waisman
,
J. L.
, eds.,
McGraw-Hill
,
New York
, pp.
293
306
.
4.
Taylor
,
D.
,
2007
,
The Theory of Critical Distances: A New Perspective in Fracture Mechanics
,
Elsevier
,
Oxford, UK
.
5.
Susmel
,
L.
,
2009
,
Multiaxial Notch Fatigue: From Nominal to Local Stress/Strain Quantities
,
Woodhead & CRC
,
Cambridge, UK
.
6.
Berto
,
F.
, and
Lazzarin
,
P.
,
2014
, “
Recent Developments in Brittle and quasi-brittle Failure Assessment of Engineering Materials by Means of Local Approaches
,”
Mater. Sci. Eng. R.
,
75
, pp.
1
48
.10.1016/j.mser.2013.11.001
7.
Lazzarin
,
P.
, and
Zambardi
,
R.
,
2001
, “
A Finite Volume-Energy Based Approach to Predict the Static and Fatigue Behaviour of Components With Sharp V-Shaped Notches
,”
Int. J. Fract.
,
112
(
3
), pp.
275
298
.10.1023/A:1013595930617
8.
Lazzarin
,
P.
, and
Lazzarin
,
F. X.
,
2005
, “
Some Expressions for the Strain Energy in a Finite Volume Surrounding the Root of Blunt V-Notches
,”
Int. J. Fract.
,
135
(
1–4
), pp.
161
185
.10.1007/s10704-005-3943-6
9.
Taylor
,
D.
,
2004
, “
Predicting the Fracture Strength of Ceramic Materials Using the Theory of Critical Distances
,”
Eng. Frac. Mech
,
71
(
16–17
), pp.
2407
2416
.10.1016/j.engfracmech.2004.01.002
10.
Taylor
,
D.
,
Merlo
,
M.
,
Pegley
,
R.
, and
Cavatorta
,
M. P.
,
2004
, “
The Effect of Stress Concentrations on the Fracture Strength of Polymethylmethacrylate
,”
Mater. Sci. Eng.
,
382
(
1–2
), pp.
288
294
.10.1016/j.msea.2004.05.012
11.
Taylor
,
D.
,
Cornetti
,
P.
, and
Pugno
,
N.
,
2005
, “
The Fracture Mechanics of Finite Crack Extension
,”
Eng. Frac. Mech
,
72
(
7
), pp.
1021
1038
.10.1016/j.engfracmech.2004.07.001
12.
Susmel
,
L. T.
,
2010
, “
D., An Elasto-Plastic Reformulation of the Theory of Critical Distances to Estimate Lifetime of Notched Components Failing in the Low/Medium-Cycle Fatigue Regime
,”
ASME J. Eng. Technol.
,
132
, p. 0
21002
.10.1115/1.4000667
13.
Susmel
,
L.
, and
Taylor
,
D.
,
2007
, “
A Novel Formulation of the Theory of Critical Distances to Estimate Lifetime of Notched Components in the Medium-Cycle Fatigue Regime
,”
Fatigue Fract Eng Mater Struct
,
30
(
7
), pp.
567
581
.10.1111/j.1460-2695.2007.01122.x
14.
Susmel
,
L.
, and
Taylor
,
D.
,
2006
, “
On the Use of the Theory of Critical Distances to Estimate Fatigue Strength of Notched Components in the Medium-Cycle Fatigue Regime
,”
Proceedings of FATIGUE 2006
,
Atlanta
, GA.
15.
Yang
,
X. G.
,
Wang
,
J. K.
, and
Liu
,
J. L.
,
2011
, “
High Temperature LCF Life Prediction of Notched DS Ni-Based Superalloy Using Critical Distance Concept
,”
Int. J. Fatigue
,
33
(
11
), pp.
1470
1476
.10.1016/j.ijfatigue.2011.05.018
16.
Yan
,
X. Q.
,
2023
, “
A Local Approach for Fracture Analysis of Sharp Notches Under Mode I Loading
,”
Engng Frac. Mech.
,
290
, p.
109404
,10.1016/j.engfracmech.2023.109404
17.
Zappalorto
,
M.
,
·Lazzarin
,
P.
, and
Filippi
,
S.
,
2010
, “
Stress Field Equations for U and Blunt V-Shaped Notches in Axisymmetric Shafts Under Torsion
,”
Int. J. Fract.
,
164
(
2
), pp.
253
269
.10.1007/s10704-010-9493-6
18.
Gong
,
Y.
,
Li
,
Z.
,
Gao
,
Y.
,
Lin
,
W.
,
Zhang
,
J.
,
Zhao
,
L.
, and
Hu
,
N.
,
2023
, “
An Improved Edge Ring Crack Torsion Configuration for mode-III Fracture Characterization
,”
Eng. Fract. Mech.
,
284
, p.
109283
.10.1016/j.engfracmech.2023.109283
19.
Zappalorto
,
M.
,
Lazzarin
,
P.
, and
Yates
,
J. R.
,
2008
, “
Elastic Stress Distributions for Hyperbolic and Parabolic Notches in Round Shafts Under Torsion and Uniform Antiplane Shear Loadings
,”
Int. J. Solids Struct.
,
45
(
18–19
), pp.
4879
4901
.10.1016/j.ijsolstr.2008.04.020
20.
Zappalorto
,
M.
,
Lazzarin
,
P.
, and
Berto
,
F.
,
2009
, “
Elastic Notch Stress Intensity Factors for Sharply V-Notched Rounded Bars Under Torsion
,”
Engng Frac. Mech.
,
76
(
3
), pp.
439
453
.10.1016/j.engfracmech.2008.11.008
21.
Coulomb
,
M.
,
1784
, “
Recherches Théoriques et Expérimentales Sur la Force de Torsion et Sur L’élasticité Des Fils de Metal
,”
Histoire de L’Académie Royale Des Sci.
, pp.
229
69
.https://hdl.handle.net/1721.1/143552
22.
Zappalorto
,
M.
,
Berto
,
F.
, and
Lazzarin
,
P.
,
2011
, “
Practical Expressions for the Notch Stress Concentration Factors of Round Bars Under Torsion
,”
Int. J. Fatigue
,
33
(
3
), pp.
382
395
.10.1016/j.ijfatigue.2010.09.016
23.
Berto
,
F.
,
Elices
,
M.
,
Lazzarin
,
P.
, and
Zappalorto
,
M.
,
2012
, “
Fracture Behaviour of Notched Round Bars Made of PMMA Subjected to Torsion at Room Temperature
,”
Engng Frac. Mech.
,
90
, pp.
143
160
.10.1016/j.engfracmech.2012.05.001
24.
Gómez
,
F. J.
,
Guinea
,
G. V.
, and
Elices
,
M.
,
2006
, “
Failure Criteria for Linear Elastic Materials With U-Notches
,”
Int. J. Fract.
,
141
(
1–2
), pp.
99
113
.10.1007/s10704-006-0066-7
25.
Berto
,
F.
,
Cendon
,
D. A.
,
Lazzarin
,
P.
, and
Elices
,
M.
,
2013
, “
Fracture Behaviour of Notched Round Bars Made of PMMA Subjected to Torsion at − 60 °C
,”
Engng Frac. Mech.
,
102
, pp.
271
287
.10.1016/j.engfracmech.2013.02.011
26.
El Haddad
,
M. H.
,
Topper
,
T. H.
, and
Smith
,
K. N.
,
1979
, “
Prediction of Non Propagating Cracks
,”
Engng Frac. Mech
,
11
(
3
), pp.
573
584
.10.1016/0013-7944(79)90081-X
27.
Berto
,
F.
,
Lazzarin
,
P.
, and
Ayatollahi
,
M. R.
,
2012
, “
Brittle Fracture of Sharp and Blunt V-Notches in Isostatic Graphite Under Torsion Loading
,”
Carbon
,
50
(
5
), pp.
1942
1952
.10.1016/j.carbon.2011.12.045
28.
Yan
,
X. Q.
,
2022
, “
A Local Approach for Fracture Analysis of V-Notch Specimens Under Mode-I Loading
,”
Eng. Fract. Mech.
,
274
, p.
108753
.10.1016/j.engfracmech.2022.108753
29.
Gross
,
B.
, and
Mendelson
,
A.
,
1972
, “
Plane Elastostatic Analysis of V- Notched Plates
,”
Int. J. Fract.
,
8
(
3
), pp.
267
276
.10.1007/BF00186126
30.
Gómez
,
F. J.
, and
Elices
,
M.
,
2003
, “
A Fracture Criterion for Sharp V-Notched Samples
,”
Int. J. Fract.
,
123
(
3/4
), pp.
163
175
.10.1023/B:FRAC.0000007374.80996.a2
31.
Yan
,
X. Q.
,
2021
, “
An Empirical Fracture Equation of Mixed Mode Cracks
,”
Theor. Appl. Fract. Mech.
,
116
, p.
103146
.10.1016/j.tafmec.2021.103146
32.
Yan
,
X. Q.
,
2024
, “
A New Type of S-N Equation and Its Application to Multiaxial Fatigue Life Prediction
,”
ASME J. Pressure Vessel Technol.
,
146
(
5
), p.
051301
.10.1115/1.4065585
33.
Yan
,
X. Q.
,
2023
, “
The Wöhler Curve Method for a Low/Medium/High Cycle Fatigue of Metals
,”
Arch. Appl. Mech.
, epub.10.22541/au.167447214.41953886/v1
34.
Yan
,
X. Q.
,
2023
, “
Research Into Applicability of Wöhler Curve Method for Low-Cycle Fatigue of Metallic Materials
,”
J. Harbin Inst. Technol. (New Series)
, 31(2), pp.
22
37
.
35.
Christensen
,
R. M.
,
2014
, “
Failure Mechanics—Part I: The Coordination Between Elasticity Theory and Failure Theory for All Isotropic Materials
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081001
.10.1115/1.4027753
You do not currently have access to this content.