Abstract

With small diameters, numerous elbows, and complex internal environment, gathering and transportation pipelines are widely applied in the oil and gas pipeline network. To guarantee their safety, the pipeline inspection gauge (PIG) driven by the pressure differential is used. When the PIG collides with the elbows in the pipeline, it exhibits complex nonlinear dynamic behaviors and its reliability and stability may also be greatly affected. To study the vibration response characteristics passing through the elbow, the dynamic modeling of the small-diameter PIG is conducted first in this paper based on the ADAMS software. Then, the fluid–structure coupling is realized by combining the dynamic model and the numerical calculation program of the fluid equation in Simulink. The simulation results indicate that the axial and swing acceleration of the two sections increase as the speed of the double-section PIG increases, while the vertical acceleration decreases. In comparison, it is found that the acceleration response of the second section is often larger than that of the first section. The results also reveal that the axial offset of the PIG at the elbow is inversely proportional to the speed and radius of the elbow, which is the fundamental reason for the lift-off values of sensors.

References

1.
Tu
,
Q.
,
Liu
,
Q.
,
Ji
,
S.
,
Ren
,
T.
, and
Li
,
Y.
,
2020
, “
Speed Simulation of Hydraulic Automatic Speed-Controlled Pipeline Inspection Gauge in Liquid Pipelines
,”
ASME J. Pressure Vessel Technol.
,
142
(
1
), p.
011802
.10.1115/1.4045132
2.
Zhao
,
J.
,
Wang
,
J.
,
Liu
,
Q.
,
Luo
,
X.
, and
Dong
,
X.
,
2022
, “
A Review of Mechanical Model, Structure, and Prospect for Long-Distance Pipeline Pig and Robot
,”
Robotica
,
40
(
12
), pp.
4271
4307
.10.1017/S026357472200090X
3.
Wu
,
X.
,
Niu
,
S.
, and
Li
,
C.
,
2021
, “
The Study of the Dynamic Response of the Natural Gas Pipeline Aerial Crossing During Pigging Process: A Review
,”
J. Fluids Struct.
,
105
, p.
103339
.10.1016/j.jfluidstructs.2021.103339
4.
Reda
,
A.
,
Shahin
,
M. A.
,
Sultan
,
I. A.
,
Lagat
,
C.
, and
Mckee
,
K. K.
,
2022
, “
Incident Case Study of Baseline Pigging During In-Line Inspections for Corrosion Resistant Alloy Clad Pipelines
,”
ASME J. Pressure Vessel Technol.
,
144
(
6
), p.
064503
.10.1115/1.4054280
5.
Mirshamsi
,
M.
, and
Rafeeyan
,
M.
,
2019
, “
Speed Control of Inspection Pig in Gas Pipelines Using Sliding Mode Control
,”
J. Process Control
,
77
, pp.
134
140
.10.1016/j.jprocont.2019.03.001
6.
He
,
H.
,
Liang
,
Z.
, and
Cui
,
X.
,
2020
, “
Molding and Simulation of Pig Speed With Brake Unit in Gas Pipeline
,”
J. Pipeline Syst. Eng.
,
11
(
1
), p.
04019042
.10.1061/(ASCE)PS.1949-1204.0000410
7.
Sadeghi
,
M. H.
,
Chitsaz
,
S.
, and
Ettefagh
,
M. M.
,
2019
, “
Effect of PIG's Physical Parameters on Dynamic Behavior of Above Ground Pipeline in Pigging Operation
,”
Mech. Syst. Signal Process.
,
132
, pp.
692
720
.10.1016/j.ymssp.2019.07.008
8.
Cao
,
Y.
,
Liu
,
C.
,
Tian
,
H.
,
Sun
,
Y.
, and
Zhang
,
S.
,
2022
, “
Mechanical Behaviors of Pipeline Inspection Gauge (Pig) in Launching Process Based on Coupled Eulerian-Lagrangian (CEL) Method
,”
Int. J. Pressure Vessels Piping
,
197
, p.
104622
.10.1016/j.ijpvp.2022.104622
9.
Ren
,
H.
,
Shi
,
D.
,
Xu
,
Y.
, and
Wang
,
H.
,
2017
, “
Research on Dynamics and Vibration Response in Pipeline Inspection Gauge (PIG) Based on the CEL Method
,”
Inter-Noise and Noise-Con Congress and Conference Proceedings: Institute of Noise Control Engineering
, Hong Kong, China, Aug. 27–30, pp.
56
67
.https://www.ingentaconnect.com/contentone/ince/incecp/2017/00000255/00000007/art00008?crawler=true
10.
Shi
,
D.
,
Xu
,
Y.
,
Helal
,
M. K.
,
Ren
,
H.
, and
Teng
,
X.
,
2017
, “
Fluid-Solid Coupling Numerical Analysis of Dynamic Vibration Characteristics of the Pipeline Inspection Gauge (PIG) in the Pipeline
,”
Inter-Noise and Noise-Con Congress and Conference Proceedings: Institute of Noise Control Engineering
, Hong Kong, China, Aug. 27–30, pp.
261
269
.
11.
Zhang
,
H.
,
Zhang
,
S.
,
Liu
,
S.
,
Zhu
,
X.
, and
Tang
,
B.
,
2015
, “
Chatter Vibration Phenomenon of Pipeline Inspection Gauges (PIGs) in Natural Gas Pipeline
,”
J. Nat. Gas Sci. Eng.
,
27
(
2
), pp.
1129
1140
.10.1016/j.jngse.2015.09.054
12.
Zhang
,
H.
,
Zhang
,
S.
,
Liu
,
S.
,
Wang
,
Y.
, and
Li
,
L.
,
2015
, “
Measurement and Analysis of Friction and Dynamic Characteristics of PIG's Sealing Disc Passing Through Girth Weld in Oil and Gas Pipeline
,”
Measurement
,
64
, pp.
112
122
.10.1016/j.measurement.2014.12.046
13.
Zhang
,
H.
,
Dong
,
J.
,
Cui
,
C.
, and
Liao
,
N.
,
2010
, “
Effect of Interference on Stress and Strain Distribution on the Spherical Sealing Cup of a PIG in Dented Pipeline
,”
ASME
Paper No. PVP2019-93037.10.1115/PVP2019-93037
14.
Cao
,
Y.
,
Zhang
,
L.
,
Liu
,
C.
,
Li
,
X.
,
Wei
,
Y.
, and
Sun
,
Y.
,
2021
, “
Prediction of the Driving Force for the Bidirectional Pig Based on the Cantilever-Kelvin Combination Model
,”
J. Pipeline Syst. Eng.
,
12
(
2
), p.
04021004
.10.1061/(ASCE)PS.1949-1204.0000540
15.
Jiang
,
J.
,
Zhang
,
H.
,
Ji
,
B.
,
Yi
,
F.
,
Yan
,
F.
, and
Liu
,
X.
,
2021
, “
Numerical Investigation on Sealing Performance of Drainage Pipeline Inspection Gauge Crossing Pipeline Elbows
,”
Energy Sci. Eng.
,
9
(
10
), pp.
1858
1871
.10.1002/ese3.955
16.
Moghaddam
,
M.
, and
Jerban
,
S.
,
2015
, “
On the In-Pipe Inspection Robots Traversing Through Elbows
,”
Int. J. Robot.
,
4
(
2
), pp.
19
27
.https://ijr.kntu.ac.ir/article_12522.html
17.
Qiao
,
J.
, and
Shang
,
J.
,
2012
, “
Research on Pipeline Elbow Passing for In-Pipe Robot
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
5
), pp.
1382
1394
.10.1177/0954406211421999
18.
Liu
,
C.
,
Wei
,
Y.
,
Cao
,
Y.
,
Zhang
,
S.
, and
Sun
,
Y.
,
2020
, “
Traveling Ability of Pipeline Inspection Gauge (PIG) in Elbow Under Different Friction Coefficients by 3D FEM
,”
J. Nat. Gas Sci. Eng.
,
75
(
10
), p.
103134
.10.1016/j.jngse.2019.103134
19.
Hendrix
,
M. H. W.
,
Graafland
,
C. M.
, and
Ostayen
,
R. A. J.
,
2018
, “
Frictional Forces for Disc-Type Pigging of Pipelines
,”
J. Pet. Sci. Eng.
,
171
, pp.
905
918
.10.1016/j.petrol.2018.07.076
20.
Wang
,
G.
, and
Qi
,
Z.
,
2018
, “
Approximate Determination of the Joint Reaction Forces in the Drive System With Double Universal Joints
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
7
), pp.
1191
1207
.10.1177/0954406217702681
21.
Zhang
,
H.
,
Gao
,
M.
,
Tang
,
B.
,
Cui
,
C.
, and
Xu
,
X.
,
2022
, “
Dynamic Characteristics of the Pipeline Inspection Gauge Under Girth Weld Excitation in Submarine Pipeline
,”
Pet. Sci.
,
19
(
2
), pp.
774
788
.10.1016/j.petsci.2021.09.044
22.
Zhang
,
H.
,
Gao
,
M.
,
Li
,
Z.
, and
Wu
,
Q.
,
2022
, “
Vibration Analysis of an In-Pipe Inspection Robot Considering Fluid-Structure Coupling
,”
Int. J. Struct. Stab. Dyn.
,
22
(
5
), p.
2250055
.10.1142/S0219455422500559
23.
Talbizadeh
,
A.
, and
Keshtkar
,
M. M.
,
2020
, “
Numerical and Experimental Study on a Bypass Pig Motion in Oil Transmission Pipeline: A Case Study
,”
J. Pet. Explor. Prod. Technol.
,
10
(
7
), pp.
3007
3023
.10.1007/s13202-020-00893-6
You do not currently have access to this content.