Abstract

Mechanical components are frequently subjected to severe cyclic pressure and/or temperature loadings. Therefore, numerical and analytical low cycle fatigue methods become widely used in the field of engineering to estimate the design fatigue lives. The primary aim of this work is to evaluate the accuracy of the most commonly used numerical and analytical low cycle fatigue life methods for specimens made of 316 LN austenitic stainless steel and subjected to fully reversed uniaxial tension–compression loading, in the room temperature condition. It was found that both maximum shear strain and Brown–Miller criterions result in a very conservative estimation for uniaxially loaded specimens. However, maximum shear strain criteria provide better results compared to the Brown–Miller criteria. The total strain energy density approach was also used, and both the Masing and non-Masing analysis were adopted in this study. It is found that the Masing model provides conservative fatigue lives, and non-Masing model results in a more realistic fatigue life prediction for 316 LN stainless steel for both low and high strain amplitudes. The fatigue design curves obtained from the commonly used analytical low cycle fatigue equations were reexamined for 316 LN SS. The obtained design curves from Langer model and its modified versions are nonconservative for this type of material. Consequently, the authors suggest new optimized parameters to fit the given test data. The obtained curve using the currently suggested parameters is in better agreement with the experimental data for 316 LN SS.

References

1.
Sissa
,
S.
,
Giacopini
,
M.
, and
Rosi
,
R.
,
2014
, “
Low-Cycle Thermal Fatigue and High-Cycle Vibration Fatigue Life Estimation of a Diesel Engine Exhaust Manifold
,”
Procedia Eng.
,
74
, pp.
105
112
.10.1016/j.proeng.2014.06.233
2.
Takahashia
,
T.
, and
Sasaki
,
K.
,
2010
, “
Low Cycle Thermal Fatigue of Aluminum Alloy Cylinder Head in Consideration of Changing Metrology Microstructure
,”
Procedia Eng.
,
2
(
1
), pp.
767
776
.10.1016/j.proeng.2010.03.083
3.
Cowles
,
B. A.
,
1996
, “
High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective
,”
Int. J. Fract.
,
80
(
2–3
), pp.
147
163
.10.1007/BF00012667
4.
Mazur
,
Z.
,
Luna-Ramirez
,
A.
,
Juárez-Islas
,
J. A.
, and
Campos-Amezcua
,
A.
,
2005
, “
Failure Analysis of a Gas Turbine Blade Made of Inconel 738 LC Alloy
,”
Eng. Failure Anal.
,
12
(
3
), pp.
474
486
.10.1016/j.engfailanal.2004.10.002
5.
Hormozi
,
R.
,
2014
, “
Experimental and Numerical Simulations of Type 316 Stainless Steel Failure Under LCF/TMF Loading Conditions
,”
Ph.D. dissertation
, Imperial College, London. 10.25560/18344
6.
Weicheng
,
C.
,
Huang
,
X.
, and
Wang
,
F.
,
2014
, “
Current Understanding of Fatigue Mechanisms of Metals
,”
Towards a Unified Fatigue Life Prediction Method for Marine Structures
,
Springer
,
Berlin
, pp.
31
68
.
7.
Zhu
,
W. Q.
,
Lin
,
Y. K.
, and
Lei
,
Y.
,
1992
, “
On Fatigue Crack Growth Under Random Loading
,”
Eng. Fract. Mech.
,
43
(
1
), pp.
1
12
.10.1016/0013-7944(92)90307-Z
8.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
2000
,
Metal Fatigue in Engineering
,
Wiley
, Hoboken, NJ.
9.
ASCE Committee on Fatigue and Fracture Reliability of the Committee on Structural Safety and Reliability of the Structural Division
,
1982
, “
Fatigue Reliability: Introduction
,”
J. Struct. Div. ASCE
,
108
(
1
), pp.
3
23
.
10.
ASCE Committee on Fatigue and Fracture Reliability of the Committee on Structural Safety and Reliability of the Structural Division
,
1982
, “
Fatigue Reliability: Quality Assurance and Maintainability
,”
J. Struct. Div. ASCE
,
108
(
1
), pp.
25
46
.
11.
ASCE Committee on Fatigue and Fracture Reliability of the Committee on Structural Safety and Reliability of the Structural Division
,
1982
, “
Fatigue Reliability: Variable Amplitude Loading
,”
J. Struct. Div. ASCE
,
108
(
1
), pp.
47
69
.
12.
ASCE Committee on Fatigue and Fracture Reliability of the Committee on Structural Safety and Reliability of the Structural Division
,
1982
, “
Fatigue Reliability: Development of Criteria for Design
,”
J. Struct. Div. ASCE
,
108
(
1
), pp.
71
88
.
13.
Newmark
,
N. M.
,
1950
, “
A Review of Cumulative Damage in Fatigue
,” University of Illinois Engineering Experiment Station, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, Report No.
NR-031-182
. https://www.ideals.illinois.edu/bitstream/handle/2142/13430/SRS-002.pdf?sequence=2
14.
Boyer
,
H. E.
,
1986
, “
Fatigue Testing
,” ASM International, West Conshohocken, PA,
Report
.https://www.asminternational.org/documents/10192/1849770/06156G_Sample.pdf
15.
Kyröläinen
,
A.
,
Vilpas
,
M.
, and
Hänninen
,
H.
,
2000
, “
Use of Stainless Steels in Bus Coach Structures
,”
J. Mater. Eng. Perform.
,
9
(
6
), pp.
669
677.
10.1361/105994900770345548
16.
Y. V. R. K.
Prasad
,
K. P.
Rao
, and
S.
Sasidhar
, eds.,
2015
,
Hot Working Guide: A Compendium of Processing Maps
,
ASM International
, West Conshohocken, PA.
17.
Castro
,
H.
,
Rodriguez
,
C.
,
Belzunce
,
F. J.
, and
Canteli
,
A. F.
,
2003
, “
Mechanical Properties and Corrosion Behaviour of Stainless Steel Reinforcing Bars
,”
J. Mater. Process. Technol.
,
143–144
, pp.
134
137
.10.1016/S0924-0136(03)00393-5
18.
McHenry
,
H. I.
,
1983
, “
The Properties of Austenitic Stainless Steel at Cryogenic Temperatures
,”
Austenitic Steels at Low Temperatures
,
Springer
,
Boston, MA
, pp.
1
27
.10.1007/978-1-4613-3730-0_1
19.
Sas
,
J.
,
Weiss
,
K. P.
, and
Jung
,
A.
, and 2003,
2015
, “
The Mechanical and Material Properties of 316 LN Austenitic Stainless Steel for the Fusion Application in Cryogenic Temperatures
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
2
(
1
), p.
1
.10.1088/1757-899X/102/1/012003
20.
Jayakumar
,
T.
,
Mathew
,
M. D.
, and
Laha
,
K.
,
2013
, “
High Temperature Materials for Nuclear Fast Fission and Fusion Reactors and Advanced Fossil Power Plants
,”
Procedia Eng.
,
55
, pp.
259
270
.10.1016/j.proeng.2013.03.252
21.
Surahyo
,
A.
,
2019
, “
Corrosion of Embedded Metals in Concrete
,”
Concrete Construction
,
Springer
,
Cham, Switzerland
, pp.
239
255
.
22.
Coffin
Jr
,
L.
, and
Fo
,
1954
, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Trans. Am. Soc. Mech. Eng.
,
76
, pp.
931
950
.https://www.worldcat.org/title/study-of-the-effects-of-cyclic-thermal-stresses-on-a-ductile-metal/oclc/702208792
23.
Manson
,
S. S.
,
1954
, “
Behavior of Materials Under Conditions of Thermal Stress
,”
National Advisory Committee for Aeronautics, Vol.
2933, Lewis Flight Propulsion Laboratory, Cleveland, OH.
24.
Basquin
,
O. H.
,
1910
, “
The Exponential Law of Endurance Tests
,”
Proc. Am. Soc. Test Mater.
,
10
, pp.
625
630
.
25.
Dassault Systemes Simulia Corp.,
2014
, “
Fatigue Theory Reference Manual
,” Vol.
2
,
Safe Technology Limited
, France.
26.
Brown
,
M. W.
, and
Miller
,
K. J.
,
1973
, “
A Theory for Fatigue Failure Under Multiaxial Stress-Strain Conditions
,”
Proc. Inst. Mech. Eng.
,
187
(
1
), pp.
745
755
.10.1243/PIME_PROC_1973_187_161_02
27.
Kandil
,
F. A.
,
Brown
,
M. W.
, and
Miller
,
K. J.
,
1982
, “
Biaxial Low-Cycle Fatigue Failure of 316 Stainless Steel at Elevated Temperatures
,”
Mechanical Behaviour and Nuclear Applications of Stainless Steel at Elevated Temperatures
, The Metals Society, London, pp.
203
210
.
28.
Baumel
,
A.
, Jr.
, and
Seeger
,
T.
,
1990
,
Materials Data for Cyclic Loading: Supplement 1
, Vol.
61
,
Elsevier Science
,
Amsterdam, The Netherlands
.
29.
Roessle
,
M. L.
, and
Fatemi
,
A.
,
2000
, “
Strain-Controlled Fatigue Properties of Steels and Some Simple Approximations
,”
Int. J. Fatigue
,
22
(
6
), pp.
495
511
.10.1016/S0142-1123(00)00026-8
30.
Fatemi
,
A.
, and
Shamsaei
,
N.
,
2011
, “
Multiaxial Fatigue: An Overview and Some Approximation Models for Life Estimation
,”
Int. J. Fatigue
,
33
(
8
), pp.
948
958
.10.1016/j.ijfatigue.2011.01.003
31.
Ricotta
,
M.
,
2015
, “
Simple Expressions to Estimate the Manson–Coffin Curves of Ductile Cast Irons
,”
Int. J. Fatigue
,
78
, pp.
38
45
.10.1016/j.ijfatigue.2015.03.025
32.
Meggiolaro
,
M. A.
, and
Castro
,
J. T. P.
,
2004
, “
Statistical Evaluation of Strain-Life Fatigue Crack Initiation Predictions
,”
Int. J. Fatigue
,
26
(
5
), pp.
463
476
.10.1016/j.ijfatigue.2003.10.003
33.
Lee
,
K. S.
, and
Song
,
J. H.
,
2006
, “
Estimation Methods for Strain-Life Fatigue Properties From hardness
,”
Int. J. Fatigue
,
28
(
4
), p.
386400
.10.1016/j.ijfatigue.2005.07.037
34.
Fatemi
,
A.
, and
Socie
,
D. F.
,
1988
, “
A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
11
(
3
), pp.
149
165
.10.1111/j.1460-2695.1988.tb01169.x
35.
Shamsaei
,
N.
, and
Fatemi
,
A.
,
2009
, “
Effect of Hardness on Multiaxial Fatigue Behaviour and Some Simple Approximations for Steels
,”
Fatigue Fract. Eng. Mater. Struct.
,
32
(
8
), pp.
631
646
.10.1111/j.1460-2695.2009.01369.x
36.
Wang
,
Y. Y.
, and
Yao
,
W. X.
,
2004
, “
Evaluation and Comparison of Several Multiaxial Fatigue Criteria
,”
Int. J. Fatigue
,
26
()(
1
), pp.
17
25
.10.1016/S0142-1123(03)00110-5
37.
Shi
,
X. Q.
,
Pang
,
H. L. J.
,
Zhou
,
W.
, and
Wang
,
Z. P.
,
1999
, “
A Modified Energy-Based Low Cycle Fatigue Model for Eutectic Solder Alloy
,”
Scr. Mater.
,
41
(
3
), pp.
289
296
.10.1016/S1359-6462(99)00164-5
38.
Lefebvre
,
D.
, and
Ellyin
,
F.
,
1984
, “
Cyclic Response and Inelastic Strain Energy in Low Cycle Fatigue
,”
Int. J. Fatigue
,
6
(
1
), pp.
9
15
.10.1016/0142-1123(84)90003-3
39.
Langer
,
B. F.
,
1962
, “
Design of Pressure Vessels for Low-Cycle Fatigue
,”
ASME J. Basic Eng.
,
84
(
3
), pp.
389
399
.10.1115/1.3657332
40.
Diercks
,
D. R.
,
1979
, “
Development of Fatigue Design Curves for Pressure Vessel Alloys Using a Modified Langer Equation
,”
ASME J. Pressure Vessel Technol.
,
101
(
4
), pp.
292
297
.10.1115/1.3454636
41.
Tanaka
,
M.
,
1974
, “
Fatigue Life Estimation of Bellows Based on Elastic-Plastic Calculations
,”
Int. J. Pressure Vessels Piping
,
2
(
1
), pp.
51
68
.10.1016/0308-0161(74)90015-5
42.
Jaske
,
C. E.
, and
O'donnel
,
W. J. L.
,
1977
, “
Fatigue Design Criteria for Pressure Vessel Alloys
,”
ASME J. Pressure Vessel Technol.
,
99
(
4
), pp.
584
592
.10.1115/1.3454577
43.
Chopra
,
O. K.
,
2008
, “
Development of a Fatigue Design Curve for Austenitic Stainless Steels in LWR Environments: A Review
,”
ASME
Paper No. PVP2002-1229.
10.1115/PVP2002-1229
44.
Li
,
U. M.
,
Lee
,
B. S.
,
Shih
,
C. T.
,
Lan
,
W. H.
, and
Lin
,
C. P.
,
2002
, “
Cyclic Fatigue of Endodontic Nickel Titanium Rotary Instruments: Static and Dynamic Tests
,”
J. Endod.
,
28
(
6
), pp.
448
451
.10.1097/00004770-200206000-00007
45.
Ellyin
,
F.
, and
Kujawski
,
D.
,
1984
, “
Plastic Strain Energy in Fatigue Failure
,”
ASME J. Pressure Vessel Technol.
,
106
(
4
), pp.
342
347
.10.1115/1.3264362
46.
Kujawski
,
D.
, and
Ellyin
,
F.
,
1984
, “
A Cumulative Damage Theory for Fatigue Crack Initiation and Propagation
,”
Int. J. Fatigue
,
6
(
2
), pp.
83
88
.10.1016/0142-1123(84)90017-3
47.
Golos
,
K.
, and
Ellyin
,
F.
,
1989
, “
Total Strain Energy Density as a Fatigue Damage Parameter
,”
Advances in Fatigue Science and Technology
,
Springer
,
Dordrecht, The Netherlands
, pp.
849
858
.
48.
Roy
,
S. C.
,
Goyal
,
S.
,
Sandhya
,
R.
, and
Ray
,
S. K.
,
2012
, “
Low Cycle Fatigue Life Prediction of 316 L (N) Stainless Steel Based on Cyclic Elasto-Plastic Response
,”
Nucl. Eng. Des.
,
253
, pp.
219
225
.10.1016/j.nucengdes.2012.08.024
49.
Dassault Systemes Simulia Corp.
,
2011
, “
Abaqus 6.11.
,”
Dassault Systemes Simulia Corp
.,
Providence, RI
.
50.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plasticity
,
2
(
2
), pp.
149
188
.10.1016/0749-6419(86)90010-0
51.
Sainte Catherine
,
C.
,
Yuritzinn
,
T.
,
Sirvent
,
A.
,
Cariou
,
Y.
, and
Martelet
,
B.
,
1997
, “
Mechanical Properties of 316 L (N) Stainless Steel for Intermediate Strain Rates at 20° and 550 °C
,” 14th International Conference On Structural Mechanics in Reactor Technology (
SMiRT
14), Lyon, France, Aug. 17–22.http://www.lib.ncsu.edu/resolver/1840.20/32422
52.
Morrow
,
J.
,
1968
, “
Fatigue Design Handbook
,”
Adv. Eng.
,
4
, pp.
21
29
.
53.
Taylor
,
D.
, and
Clancy
,
O. M.
,
1991
, “
The Fatigue Performance of Machined Surfaces
,”
Fatigue Fract. Eng. Mater. Struct.
,
14
(
2–3
), pp.
329
336
.10.1111/j.1460-2695.1991.tb00662.x
54.
Goyal
,
S.
,
Mandal
,
S.
,
Parameswaran
,
P.
,
Sandhya
,
R.
,
Athreya
,
C. N.
, and
Laha
,
K.
,
2017
, “
A Comparative Assessment of Fatigue Deformation Behavior of 316 LN SS at Ambient and High Temperature
,”
Mater. Sci. Eng.: A
,
696
, pp.
407
415
.10.1016/j.msea.2017.04.102
55.
Morrow
,
J.
,
1965
, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
Internal Friction, Damping, and Cyclic Plasticity
,
ASTM International
, West Conshohocken, PA.
56.
Yimin
,
L.
,
Jinrui
,
W.
, and
Zhongxiao
,
S.
,
1990
, “
Application of Low-Cycle Fatigue Data to Pressure Vessel Design Fatigue Curve
,”
Int. J. Fatigue
,
12
(
3
), pp.
215
218
.10.1016/0142-1123(90)90098-Y
57.
Zhou
,
Y.
,
Ou
,
Y. C.
,
Lee
,
G. C.
, and
O'Connor
,
J. S.
,
2008
, “
A Pilot Experimental Study on the Low Cycle Fatigue Behavior of Stainless Steel Rebars for Earthquake Engineering Applications
,”
Masters Abstr. Int.
,
47
(
1
), pp.
1
56
. https://www.stainlessrebar.com/docs/university-buffalo-stainless-steel-seismic-applications.pdf
58.
Yuan
,
X.
,
Yu
,
W.
,
Fu
,
S.
,
Yu
,
D.
, and
Chen
,
X.
,
2016
, “
Effect of Mean Stress and Ratcheting Strain on the Low Cycle Fatigue Behavior of a Wrought 316 LN Stainless Steel
,”
Mater. Sci. Eng., A
,
677
, pp.
193
202
.10.1016/j.msea.2016.09.053
59.
Hamada
,
M.
, and
Takezono
,
S.
,
1967
, “
Strength of U-Shaped Bellows: 5th Report, Fatigue Strength Under Axial Loading
,”
Bull. JSME
,
10
(
40
), pp.
611
617
.10.1299/jsme1958.10.611
60.
Marcal
,
P. V.
, and
Turner
,
C. E.
,
1965
, “
Limited Life of Shells of Revolution Subjected to Severe Local Bending
,”
J. Mech. Eng. Sci.
,
7
(
4
), pp.
408
423
.10.1243/JMES_JOUR_1965_007_063_02
You do not currently have access to this content.