Abstract

The liner of type 3 high-pressure vessel is manufactured by a D.D.I. (Deep drawing and ironing) process for the cylinder part, which is a continuous process that includes a drawing process to reduce the diameter of the billet and a subsequent ironing process to reduce the thickness of the billet. But the wall thickness of type 3 pressure vessel liners used in vehicles and ships is required to be 5 mm. Excessive wall thickness not only increases the weight of hydrogen vehicles and ships equipped with type 3 high-pressure vessels but also deteriorates their transportation efficiency. But the forming process of the cylinder part of the high-pressure vessel liner (Al6061) has a total of three stages (first deep drawing with blank holder, second redrawing, third redrawing + ironing) through which the wall thickness is manufactured up to 6.8 mm in the actual field. In this study, the maximum drawing ratio and die inflow angle in the first-stage deep drawing process by using the shape factor formula of the tractrix die and combined process (redrawing + ironing) in the third stage were determined in order to manufacture a liner with a wall thickness of 5 mm within the existing three stages, including saving of die costs. Using damage value verified through finite element analysis and experiment and based on the above results, design of the D.D.I. process (three stages) was performed, and its results were verified.

References

1.
Abdul
,
H. A. R.
,
Alhassan
,
S. T.
,
Wan
,
A. N. W. M.
,
Suhadiyana
,
H.
, and
Khairul
,
I. S.
,
2015
, “
An Overview of Hydrogen Production From Renewable Energy Source for Remote Area Application
,”
Appl. Mech. Mater.
,
699
, pp.
474
479
.10.4028/www.scientific.net/AMM.699.474
2.
Ball
,
M.
, and
Weeda
,
M.
,
2015
, “
The Hydrogen Economy-Vision or Reality?
,”
Int. J. Hydrogen Energy
,
40
(
25
), pp.
7903
7919
.10.1016/j.ijhydene.2015.04.032
3.
Son
,
D. S.
, and
Chang
,
S. H.
,
2012
, “
Evaluation of Modeling Techniques for a Type III Hydrogen Pressure Vessel (70 MPa) Made of an Aluminum Liner and a Thick Carbon/Epoxy Composite for Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2353
2369
.10.1016/j.ijhydene.2011.11.001
4.
Barthelemy
,
H.
,
Weber
,
M.
, and
Barbier
,
F.
,
2017
, “
Hydrogen Storage: Recent Improvements and Industrial Perspectives
,”
Int. J. Hydrogen Energy
,
42
(
11
), pp.
7254
7262
.10.1016/j.ijhydene.2016.03.178
5.
Almeida
,
J. H. S.
, Jr.
,
Faria
,
H.
,
Marques
,
A. T.
, and
Amico
,
S. C.
,
2014
, “
Load Sharing Ability of the Liner in Type III Composite Pressure Vessels Under Internal Pressure
,”
J. Reinf. Plast. Compos.
,
33
(
24
), pp.
2274
2286
.10.1177/0731684414560221
6.
Yamabe
,
J.
,
Awane
,
T.
, and
Murakami
,
Y.
,
2017
, “
Hydrogen Trapped at Intermetallic Particles in Aluminum Alloy 6061-T6 Exposed to High-Pressure Hydrogen Gas and the Reason for High Resistance Against Hydrogen Embrittlement
,”
Int. J. Hydrogen Energy
,
42
(
38
), pp.
24560
24568
.10.1016/j.ijhydene.2017.08.035
7.
Kwak
,
H.
,
Park
,
G.
,
Seong
,
H.
, and
Kim
,
C.
,
2019
, “
Integrated Design of D.D.I., Filament Winding and Curing Processes for Manufacturing the High Pressure Vessel (Type II)
,”
Chin. J. Mech. Eng.
,
32
(
1
), p.
83
.10.1186/s10033-019-0396-9
8.
Kwak
,
H. S.
,
Park
,
G. Y.
, and
Kim
,
C.
,
2020
, “
Design of Compressed Natural Gas Pressure Vessel (Type II) to Improve Storage Efficiency and Structural Reliability
,”
ASME J. Pressure Vessel Technol.
,
142
(
1
), p.
011303
.10.1115/1.4045027
9.
Juan
,
P. B. R.
,
Damien
,
H.
,
Grandidier
,
J. C.
,
Villalonga
,
S.
, and
Nony
,
F.
,
2015
, “
700 Bar Type IV High Pressure Hydrogen Storage Vessel Burst – Simulation and Experimental Validation
,”
Int. J. Hydrogen Energy
,
40
(
38
), pp.
13183
13192
.10.1016/j.ijhydene.2015.05.126
10.
Fukui
,
H.
,
Yoshimura
,
A.
, and
Matsuzaki
,
R.
,
2016
, “
Structural Optimization for CFRP Cryogenic Tank Based on Energy Release Rate
,”
Compos. Struct.
,
152
, pp.
883
890
.10.1016/j.compstruct.2016.06.004
11.
Cho
,
S. M.
,
Kim
,
K. S.
,
Lee
,
S. K.
,
Jung
,
G. S.
,
Lee
,
S. K.
, and
Lyu
,
S. K.
,
2018
, “
Effect of Dome Curvature on Failure Mode of Type 4 Composite Pressure Vessel
,”
Int. J. Precis. Eng. Manuf.
,
19
(
3
), pp.
405
410
.10.1007/s12541-018-0048-5
12.
Alcantar
,
V.
,
Aceves
,
S. M.
,
Ledesma
,
E.
,
Ledesma
,
S.
, and
Aguilera
,
E.
,
2017
, “
Optimization of Type 4 Composite Pressure Vessels Using Genetic Algorithms and Simulated Annealing
,”
Int. J. Hydrogen Energy
,
42
(
24
), pp.
15770
15781
.10.1016/j.ijhydene.2017.03.032
13.
Thanh
,
Q. H.
,
Roh
,
H. S.
, and
Rajesh
,
K. A.
,
2017
, “
Performance Assessment of 700-Bar Compressed Hydrogen Storage for Light Duty Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
42
(
40
), pp.
25121
25129
.10.1016/j.ijhydene.2017.08.123
14.
Leh
,
D.
,
Saffre
,
P.
,
Francescato
,
P.
,
Arrieux
,
R.
, and
Villalonga
,
S.
,
2015
, “
A Progressive Failure Analysis of a 700-Bar Type IV Hydrogen Composite Pressure Vessel
,”
Int. J. Hydrogen Energy
,
40
(
38
), pp.
13206
13214
.10.1016/j.ijhydene.2015.05.061
15.
Qian
,
Z.
,
Hui
,
X.
,
Xiaolong
,
J.
,
Lei
,
Z.
,
Shuo
,
C.
, and
Huabi
,
W.
,
2020
, “
Design of a 70 MPa Type IV Hydrogen Storage Vessel Using Accurate Modeling Techniques for Dome Thickness Prediction
,”
Compos. Struct.
,
236
, p.
111915
.10.1016/j.compstruct.2020.111915
16.
Kumar
,
C. J.
,
Marcus
,
W.
,
Thomas
,
G.
, and
Johannes
,
S.
,
2021
, “
Numerical Analysis of Filament Wound Cylindrical Composite Pressure Vessels Accounting for Variable Dome Contour
,”
J. Compos. Sci.
,
5
(
2
), p.
56
.10.3390/jcs5020056
17.
Valter
,
L. J. J.
, and
Mayorkinos
,
P.
,
2021
, “
Design by Analysis of Deep-Sea Type III Pressure Vessel
,”
Int. J. Hydrogen Energy
,
46
(
17
), pp.
10468
10477
.10.1016/j.ijhydene.2020.12.128
18.
Sapre
,
S.
,
Pareek
,
K.
, and
Vyas
,
M.
,
2020
, “
Investigation of Structural Stability of Type IV Compressed Hydrogen Storage Tank During Refueling of Fuel Cell Vehicle
,”
Energy Storage
,
2
(
4
), p.
e150
.10.1002/est2.150
19.
Rajhi
,
W.
,
2019
, “
Numberical Simulation of Damage on Warm Deep Drawing of Al 6061-T6 Aluminium Alloy,” Engineering
,”
Technol. Appl. Sci. Res.
,
9
(
5
), pp.
4830
4834
.10.48084/etasr.3148
20.
Chen
,
D. C.
,
Li
,
C. Y.
, and
Lai
,
Y. Y.
,
2019
, “
Finite Element Analysis of Deep Drawing
,”
Adv. Intell. Mechatronic Syst. Precis. Eng.
,
11
(
9
), pp.
1
10
.10.1177/1687814019874561
21.
Han
,
M. G.
, and
Chang
,
S. H.
,
2015
, “
Failure Analysis of a Type III Hydrogen Pressure Vessel Under Impact Loading Induced by Free Fall
,”
Compos. Struct.
,
127
, pp.
288
297
.10.1016/j.compstruct.2015.03.027
22.
Li
,
X.
,
Kassner
,
M. E.
, and
Bergsma
,
S. C.
,
2000
, “
Recrystallization Behavior of Rolled Ingots of 6061 and 6069 Aluminum Alloys
,”
J. Mater. Eng. Perform.
,
9
(
4
), pp.
416
423
.10.1361/105994900770345818
23.
Patrycja
,
W. G.
,
Zbigniew
,
P.
, and
Lukasz
,
W.
,
2020
, “
Determination of the Value of the Damage Function in 1050A Aluminium Alloy
,”
Adv. Sci. Technol. Res. J.
,
14
(
2
), pp.
49
55
.10.12913/22998624/118105
24.
Ghazani
,
M. S.
, and
Eghbali
,
B.
,
2013
, “
Finite Element Study on the Development of Damage and Flow Characteristics in Al7075 Alloy During Ex-ECAP,” Modeling and Numerical Simulation of Material
,”
Science
,
3
(
1
), pp.
27
32
.10.4236/mnsms.2013.31004
25.
Chen
,
D. C.
,
Chang
,
D. Y.
,
Chen
,
F. H.
, and
Kuo
,
T. Y.
,
2018
, “
Application of Ductile Fracture Criterion for Tensile Test of Zirconium Alloy 702
,”
Sci. Iran.
, 25(2), pp. 824–829.
10.24200/sci.2018.20174
26.
Faura
,
F.
,
Garcı́a
,
A.
, and
Estrems
,
M.
,
1998
, “
Finite Element Analysis of Optimum Clearance in the Blanking Process
,”
J. Mater. Process. Technol.
,
80–81
, pp.
121
125
.10.1016/S0924-0136(98)00181-2
27.
Park
,
G. Y.
,
Park
,
R. K.
,
Kwak
,
H. S.
, and
Kim
,
C.
,
2021
, “
Design of a Combined Redrawing-Ironing Process to Manufacture a CNG Pressure Vessel Liner
,”
Appl. Sci.
,
11
(
18
), p.
8295
.10.3390/app11188295
28.
Park
,
G. Y.
,
2018
, “
A Study on Deep Drawing Process using Tractrix Die for Manufacturing of High Pressure Vessel
,” Master's thesis,
Pusan National University
, Busan, South Korea.
You do not currently have access to this content.