Abstract

The thermomechanical modeling of a sleeve rehabilitation system for pressure pipes is studied including temperature effect on system behavior. The rehabilitation system consists of a multicylinder axisymmetric layer system, with an intermediate layer of epoxy resins and two outer steel covers that are longitudinally welded forming a sleeve. The analysis is conducted over several stages; initially, the incidence of temperature on the rigidity of three types of resins currently available on the market is experimentally evaluated. Then, nonlinear relationships between rigidity and temperature are established from the evaluation of the resins, which are typical of an inhomogeneous material. The resins exhibit a significant loss of rigidity with temperature, generating a risk of delamination that could drastically reduce the effectiveness of the rehabilitation system in the event of possible temperature rises. An analytical model was developed to calculate contact pressures between the resin layer and the external sleeve, internal pipeline displacements, stresses, and deformations. Finally, contour plots were developed for different temperature, pressure levels, and pipe thickness as a graphics tool to predict pipeline failure due to plastic deformation or rupture.

References

1.
Maury
,
H.
,
Bris
,
J.
,
Gomez
,
H.
,
Sanchez
,
A.
,
Medina
,
V.
,
Ojeda
,
M.
,
Escorcia
,
O.
,
Bermejo
,
C.
,
Morelo
,
A.
, and
Medina
,
J.
,
2018
, “
Critical and Comprehensive Evaluation of High Pressure Pipeline Rehabilitation Methods and Patents for Seeking Innovations Trends
,”
Recent Patents Eng.
,
12
(
1
), pp.
46
55
.10.2174/1872212111666170526162124
2.
Bahoum
,
K.
,
Diany
,
M.
, and
Mabrouki
,
M.
,
2017
, “
Stress Analysis of Compound Cylinders Subjected to Thermo-Mechanical Loads
,”
J. Mech. Sci. Technol.
,
31
(
4
), pp.
1805
1811
.10.1007/s12206-017-0328-5
3.
Wilson
,
W. R. D.
, and
Skelton
,
W. J.
,
1967
, “
Paper 5: Design of High Pressure Cylinders
,”
Proceedings of the Institution of Mechanical Engineers
,
182
(
3
), pp.
1
10
.10.1243/PIME_CONF_1967_182_081_02
4.
Eslami
,
M. R.
,
Hetnarski
,
R. B.
,
Ignaczak
,
J.
,
Noda
,
N.
,
Sumi
,
N.
, and
Tanigawa
,
Y.
,
2013
,
Theory of Elasticity and Thermal Stresses
, Vol.
197
,
Springer,
Dordrectch, The Netherlands
.
5.
Hearn
,
E. J.
,
2001
, “
Mechanics of Materials 2: An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials
,”
Butterworth-Heinemann
,
Oxford, UK
.
6.
Margetson
,
J.
, and
Stanley
,
P.
,
1976
, “
Stress and Failure Probability Analysis for a Transversely Isotropic, Brittle, Elastic Cylinder Subjected to Internal Pressure and Axisymmetric Thermal Loading
,”
Int. J. Mech. Sci.
,
18
(
11–12
), pp.
561
570
.10.1016/0020-7403(76)90083-7
7.
Sollund
,
H. A.
,
Vedeld
,
K.
, and
Hellesland
,
J.
,
2014
, “
Efficient Analytical Solutions for Heated and Pressurized Multi-Layer Cylinders
,”
Ocean Eng.
,
92
, pp.
285
295
.10.1016/j.oceaneng.2014.10.003
8.
Clapeyron
,
B.
, and
Lamé
,
G.
,
1831
, “
Mémoire Sur L'équilibre Intérieur Des Corps Solides Homogènes. (Suite du Mémoire)
,”
J. Die Reine Angew. Math. (Crelles J.)
,
1831
(
7
), pp.
381
413
.https://eudml.org/doc/146751
9.
Vedeld
,
K.
, and
Sollund
,
H. A.
,
2014
, “
Stresses in Heated Pressurized Multi-Layer Cylinders in Generalized Plane Strain Conditions
,”
Int. J. Pressure Vessel Pip.
,
120-121
, pp.
27
35
.10.1016/j.ijpvp.2014.04.002
10.
Zhang
,
Q.
,
Wang
,
Z. W.
,
Tang
,
C. Y.
,
Hu
,
D. P.
,
Liu
,
P. Q.
, and
Xia
,
L. Z.
,
2012
, “
Analytical Solution of the Thermo-Mechanical Stresses in a Multilayered Composite Pressure Vessel Considering the Influence of the Closed Ends
,”
Int. J. Pressure Vessel Pip.
,
98
, pp.
102
110
.10.1016/j.ijpvp.2012.07.009
11.
Razoki Majeed Algbory, A. M.
,
2011
,“
Stress Analysis of the Multi-Layered Thick Cylinders
,”
Al-Qadisiyah J. Eng. Sci.
,
4
(
2
), pp.
51
67
.https://www.iasj.net/iasj?func=fulltext&aId=33528
12.
Majzoobi
,
G. H.
,
Farrahi
,
G. H.
,
Pipelzadeh
,
M. K.
, and
Akbari
,
K.
,
2004
, “
Experimental and Finite Element Prediction of Bursting Pressure in Compound Cylinders
,”
Int. J. Pressure Vessel Pip.
,
81
(
12
), pp.
889
896
.10.1016/j.ijpvp.2004.06.011
13.
Yamini
,
S.
, and
Young
,
R. J.
,
1980
, “
The Mechanical Properties of Epoxy Resins
,”
J. Mater. Sci
,
15
(
7
), pp.
1814
1822
.10.1007/BF00550602
14.
Richeton
,
J.
,
Ahzi
,
S.
,
Vecchio
,
K. S.
,
Jiang
,
F. C.
, and
Adharapurapu
,
R. R.
,
2006
, “
Influence of Temperature and Strain Rate on the Mechanical Behavior of Three Amorphous Polymers: Characterization and Modeling of the Compressive Yield Stress
,”
Int. J. Solids Struct.
,
43
(
7–8
), pp.
2318
2335
.10.1016/j.ijsolstr.2005.06.040
15.
Horgan
,
C. O.
, and
Chan
,
A. M.
,
1999
, “
The Stress Response of Functionally Graded Isotropic Linearly Elastic Rotating Disks
,”
J. Elast.
,
55
(
3
), pp.
219
230
.10.1023/A:1007644331856
16.
Oral
,
A.
, and
Anlas
,
G.
,
2005
, “
Effects of Radially Varying Moduli on Stress Distribution of Nonhomogeneous Anisotropic Cylindrical Bodies
,”
Int. J. Solids Struct.
,
42
(
20
), pp.
5568
5588
.10.1016/j.ijsolstr.2005.02.044
17.
Robert
,
M. P. L.
,
Zimmerman
,
W.
, and
Lut
,
Melanie P.
,
1999
, “
Thermal Stresses and Thermal Expansion in a Uniformly Heated Functionally Graded Cylinder
,”
J. Therm. Stress
,
22
(
2
), pp.
177
188
.10.1080/014957399280959
18.
Shi
,
Z.
,
Zhang
,
T.
, and
Xiang
,
H.
,
2007
, “
Exact Solutions of Heterogeneous Elastic Hollow Cylinders
,”
Compos. Struct.
,
79
(
1
), pp.
140
147
.10.1016/j.compstruct.2005.11.058
19.
Jabbari
,
M.
,
Sohrabpour
,
S.
, and
Eslami
,
M. R.
,
2002
, “
Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder Due to Radially Symmetric Loads
,”
Int. J. Pressure Vessel Pip.
,
79
(
7
), pp.
493
497
.10.1016/S0308-0161(02)00043-1
20.
Theotokoglou
,
E. E.
, and
Stampouloglou
,
I. H.
,
2008
, “
The Radially Nonhomogeneous Elastic Axisymmentric Problem
,”
Int. J. Solids Struct.
,
45
(
25–26
), pp.
6535
6552
.10.1016/j.ijsolstr.2008.08.011
21.
Han
,
L.
,
Zhan
,
C.
,
Liu
,
Y.
, and
Wu
,
Z.
,
2017
, “
A State Space Solution for Onset of Surface Instability of Elastic Cylinders With Radially Graded Young's Modulus
,”
Int. J. Solids Struct.
,
126–127
, pp.
8
16
.10.1016/j.ijsolstr.2017.07.025
22.
Kansal
, G., and Parvez, M.
,
2012
, “
Thermal Stress Analysis of Orthotropic Graded Rotating Disks
,”
Int. J. Mod. Eng. Res.
,
2
(
5
), pp.
3881
3885
.http://www.ijmer.com/papers/Vol2_Issue5/EX2538813885.pdf
23.
American Petroleum Institute
,
2018
, “API | API Specification 5 L,” 46th ed.,
American Petroleum Institute
,
Washington, DC
.
24.
Thorpe
,
R. J.
,
2013
, Experimental Characterization of the Viscoelastic Behavior of a Curing Epoxy Matrix Composite From Pre-Gelation to Full Cure, M.A.Sc. thesis,
University of British Columbia
,
Vancouver, Canada
.https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0073820
25.
Courtois
,
A.
,
Hirsekorn
,
M.
,
Benavente
,
M.
,
Jaillon
,
A.
,
Marcin
,
L.
,
Ruiz
,
E.
, and
Lévesque
,
M.
,
2019
, “
Viscoelastic Behavior of an Epoxy Resin During Cure Below the Glass Transition Temperature: Characterization and Modeling
,”
J. Compos. Mater.
,
53
(
2
), pp.
155
171
.10.1177/0021998318781226
26.
Theocaris
,
P. S.
,
1962
, “
Viscoelastic Properties of Epoxy Resins Derived From Creep and Relaxation Tests at Different Temperatures
,”
Rheol. Acta
,
2
(
2
), pp.
92
96
.10.1007/BF01972534
27.
Cengel
,
Y. A.
,
2006
,
Heat and Mass Transfer (SI Units) a Practical Approach
,
McGraw-Hill Higher Education
,
Singapore
.
28.
Xiang
,
H.
,
Shi
,
Z.
, and
Zhang
,
T.
,
2006
, “
Elastic Analyses of Heterogeneous Hollow Cylinders
,”
Mech. Res. Commun.
,
33
(
5
), pp.
681
691
.10.1016/j.mechrescom.2006.01.005
29.
Ugural
,
A. C.
, and
Fenster
,
S. K.
,
2012
,
Advanced Mechanics of Materials and Applied Elasticity
, 5th ed., Vol.
40
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.