Abstract

Internal flooding due to pipe breaks can interfere with a plant's ability to safely shut down or maintain the decay heat removal. Flooding simulation tools require information on location of pipe breaks and the degree of damage at each location as input for assessing the flooding risk. This can be especially challenging as the number of potential leakage locations are quite large and the state-of-the-art simulation tools cannot determine the degree of damage at a location. This paper presents a novel simulation-based framework that can be used to determine seismically induced flooding scenarios including the potential locations of leakage and the degree of leakage at each location. The proposed framework builds upon a few recent experimental and simulation-based studies on piping fragilities. This research identifies that a direct use of piping fragility information by flooding simulation tools is not appropriate. This paper presents a new approach that creates mutually exclusive and collectively exhaustive events to characterize the complete sample space at each location and employs the total probability theorem to characterize the probabilities for each event in this space. This paper also identifies the importance of including the temporal effects in the piping fragilities in order to allow a more realistic simulation of internal flooding scenarios.

References

1.
Electric Power Research Institute (EPRI)
,
2015
, “
Seismically Induced Internal Fire and Flood Probabilistic Risk Assessment—Phase I
,” Electric Power Research Institute, Palo Alto, CA, Report No. EPRI TR-3002005289.
2.
Yang
,
J.
,
2014
, “
Fukushima Daiichi Accident: Lessons Learned and Future Actions From the Risk Perspectives
,”
Nucl. Eng. Technol.
,
46
(
1
), pp.
27
38
.10.5516/NET.03.2014.702
3.
Saji
,
G.
,
2014
, “
Safety Goals for Seismic and Tsunami Risks: Lessons Learned From the Fukushima Daiichi Disaster
,”
Nucl. Eng. Des.
,
280
, pp.
449
463
.10.1016/j.nucengdes.2014.09.013
4.
Bensi
,
M.
,
Ferrante
,
F.
, and
Philip
,
J.
,
2015
, “
Assessment of Flood Fragility for Nuclear Power Plants: Challenges and Next Steps
,” Transactions of the 23rd International Conference in Structural Mechanics (SMiRT 23), Manchester, UK, Aug. 10–14.
5.
Ribicic
,
H.
,
Waser
,
J.
,
Fuchs
,
R.
,
Bloschl
,
G.
, and
Groller
,
E.
,
2013
, “
Visual Analysis and Steering of Flooding Simulations
,”
IEEE Trans. Visualization Comput. Graph.
,
19
(
6
), pp.
1062
1075
.10.1109/TVCG.2012.175
6.
Tahhan
,
A.
,
Muchmore
,
C.
,
Nichols
,
L.
,
Wells
,
A.
,
Roberts
,
G.
,
Ryan
,
E.
,
Suresh
,
S.
,
Bhandari
,
B.
, and
Pope
,
C.
,
2017
, “
Development of Experimental and Computational Procedures for Nuclear Power Plant Component Testing Under Flooding Conditions
,”
ASME
Paper No: ICONE25-67985.10.1115/ICONE25-67985
7.
Ryan
,
E. D.
,
Savage
,
B. M.
,
Smith
,
C. L.
, and
Pope
,
C. L.
,
2019
, “
Comparison of Free Surface Flow Measurements and Smoothed Particle Hydrodynamic Simulation for Potential Nuclear Power Plant Flooding Simulation
,”
Ann. Nucl. Energy
,
126
, pp.
389
397
.10.1016/j.anucene.2018.11.013
8.
Mandelli
,
D.
,
Prescott
,
S.
,
Smith
,
C.
,
Alfonsi
,
A.
,
Rabiti
,
C.
,
Cogliati
,
J.
, and
Kinoshita
,
R.
,
2015
, “
A Flooding Induced Station Blackout Analysis for a Pressurized Water Reactor Using the RISMC Toolkit
,”
Sci. Technol. Nucl. Install.
,
1
, p.
308163
.10.1155/2015/308163
9.
Prescott
,
S.
,
Mandelli
,
D.
,
Sampath
,
R.
,
Smith
,
C.
, and
Lin
,
L.
,
2015
, “
3D Simulation of External Flooding Events for the RISMC Pathway
,” Idaho National Laboratory, Idaho Falls, ID, Report No.
INL/EXT-15-36773
.
10.
Reitherman
,
B.
,
Sabol
,
T.
,
Bachman
,
R.
,
Bellet
,
D.
,
Bogen
,
R.
,
Cheu
,
D.
,
Coleman
,
P.
,
Denney
,
J.
,
Durkin
,
M.
,
Fitch
,
C.
,
Fleming
,
R.
,
Gates
,
W.
,
Goodno
,
B.
,
Halling
,
M.
, and
Hess
,
R.
,
1995
, “
Northridge Earthquake of January 17, 1994: Reconnaissance Report—Nonstructural Damage
,”
Earthquake Spectra
,
11
(
S2
), pp.
453
514
.10.1193/1.1585856
11.
International Atomic Energy Agency
,
2003
, “
Seismic Evaluation of Existing Nuclear Power Plants
,” accessed Oct. 11, 2019, https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1149_web.pdf
12.
ASME
2013
, “
Rules for Construction of Nuclear Facility Components
,” American Society of Mechanical Engineers, New York, Standard. ASME BPVC Section III.
13.
Ju
,
B. S.
, and
Gupta
,
A.
,
2015
, “
Seismic Fragility of Threaded Tee-Joint Connections in Piping Systems
,”
Int. J. Pressure Vessels Piping
,
132-133
, pp.
106
118
.10.1016/j.ijpvp.2015.06.001
14.
Ju
,
B. S.
,
Gupta
,
A.
, and
Ryu
,
Y.
,
2016
, “
Piping Fragility Evaluation: Interaction With High-Rise Building Performance
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), p.
031801
.10.1115/1.4034406
15.
Ryu
,
Y.
,
Gupta
,
A.
,
Woo
,
Y. J.
, and
Ju
,
B. S.
,
2016
, “
A Reconciliation of Experimental and Analytical Results for Piping Systems
,”
Int. J. Steel Struct.
,
16
(
4
), pp.
1043
1055
.10.1007/s13296-016-0019-6
16.
Coleman
,
J. L.
,
Bolisetti
,
C.
,
Veeraraghavan
,
S.
,
Parisi
,
C.
,
Prescott
,
S. R.
,
Gupta
,
A.
, and
Kammerer
,
A. M.
,
2016
, “
Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications
,” Idaho National Laboratory, Idaho Falls, ID, Report No.
INL/EXT-16-40055
.https://lwrs.inl.gov/RiskInformed%20Safety%20Margin%20Characterization/Multi-Hazard_Advanced_Seismic_Probabilisitc_Risk_assessment_Tools_and_Applications.pdf
17.
Parisi
,
C.
,
Prescott
,
S. R.
,
Szilard
,
R. H.
,
Coleman
,
J. L.
,
Spears
,
R. E.
, and
Gupta
,
A.
,
2016
, “
Demonstration of External Hazards Analysis
,” Idaho National Laboratory Idaho Falls, ID, Report No.
INL/EXT-16-39353
.https://lwrs.inl.gov/RiskInformed%20Safety%20Margin%20Characterization/Demonstration_of_External_Hazards_Analysis.pdf
18.
Szilard
,
R. H.
,
Coleman
,
J. L.
,
Prescott
,
S. R.
,
Parisi
,
C.
, and
Smith
,
C. L.
,
2016
, “
RISMC Toolkit and Methodology Research and Development Plan for External Hazards Analysis
,” Idaho National Laboratory, Idaho Falls, ID, Report No.
INL/EXT-16-38089
.https://lwrs.inl.gov/RiskInformed%20Safety%20Margin%20Characterization/INL-EXT-16-38089_RISMC_Toolkit_and_Methodology_R_and_D_Plan_for_Ext_Hazards_Analysis.pdf
19.
Tian
,
Y.
,
Filiatrault
,
A.
, and
Mosqueda
,
G.
,
2014
, “
Experimental Seismic Fragility of Pressurized Fire Suppression Sprinkler Piping Joints
,”
Earthquake Spectra
,
30
(
4
), pp.
1733
1748
.10.1193/111011EQS278M
20.
Antaki
,
G.
,
2004
, “
Seismic Capacity of Threaded, Brazed and Grooved Clamped Joints
,”
ASME
Paper No. PVP2004-2915.10.1115/PVP2004-2915
21.
Goodwin
,
E.
,
Maragakis
,
E.
, and
Itani
,
A.
,
2004
, “
Experimental Comparison of the Seismic Response of Welded and Threaded Hospital Piping Systems
,” University of Nevada, Reno, NV.
22.
ICBO Evaluation Service, Inc
.,
2000
, “
Acceptance Criteria for Seismic Qualification Testing of Nonstructural Components
,”
AC156, International Conference of Building Officials, ICBO Evaluation Service
,
Whittier, CA
.
23.
UBC 1997, “
Uniform Building Code
,”
International Conference of Building Officials
,
Whittier, CA, USA
.
24.
Chen
,
S. J.
,
An
,
Q.
, and
Zhang
,
Y.
,
2010
, “
Loading Analysis on the Thread Teeth in Cylindrical Pipe Thread Connection
,”
ASME J. Pressure Vessel Technol.
,
132
, p.
031202
.10.1115/1.4000729
25.
Wittenberghe
,
J. V.
,
Baets
,
P. D.
, and
Waele
,
W. D.
,
2010
, “
Fatigue Life Improvement of Threaded Pipe Couplings
,”
AMSE
Paper No. PVP2010-25687.10.1115/PVP2010-25687
26.
Mazzoni
,
S.
,
Mckenna
,
F.
,
Scott
,
M. H.
, and
Fenves
,
G. L.
,
2006
, “
OpenSees Command Language Manual
,” Open System for Earthquake Engineering Simulation (OpenSees), CA, accessed Oct. 11, 2019, http://opensees.berkeley.edu/
27.
Filippou
,
F. C.
,
Popov
,
E. P.
, and
Bertero
,
V. V.
,
1983
, “
Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints
,”
Earthquake Engineering Research Center
,
University of California, Berkeley, CA
, Report No.
EERC 83–19
. https://nehrpsearch.nist.gov/static/files/NSF/PB84192020.pdf
28.
Soroushian
,
S.
,
Zaghi
,
A. E.
,
Maragakis
,
M.
,
Echevarria
,
A.
,
Tian
,
Y.
, and
Filiatrault
,
A.
,
2015
, “
Analytical Seismic Fragility Analysis of Fire Sprinkler Piping Systems With Threaded Joints
,”
Earthquake Spectra
,
32
(
2
), pp.
1125
1155
.10.1193/083112EQS277M
29.
Electric Power Research Institute (EPRI)
,
1994
, “
Methodology for Developing Seismic Fragilities
,” Electric Power Research Institute, Palo Alto, CA, Report No. EPRI TR-103959.
30.
Electric Power Research Institute (EPRI)
,
2002
, “
Seismic Fragility Applications Guide
,” Electric Power Research Institute, Palo Alto, CA, Report No. 1002988.
You do not currently have access to this content.