Motivated by the earthquake response of industrial pressure vessels, the present paper investigates externally-induced sloshing in horizontal-cylindrical and axisymmetric liquid containers. Assuming ideal and irrotational flow, small-amplitude free-surface elevation, and considering appropriate trigonometric functions for the sloshing potential, a two-dimensional eigenvalue problem is obtained for zero external excitation, which is solved through a variational (Galerkin) formulation that uses triangular finite elements. Subsequently, based on an appropriate decomposition of the container-fluid motion, and considering the eigenmodes of the corresponding eigenvalue problem, an efficient methodology is proposed for externally-induced sloshing through the calculation of the corresponding sloshing (or convective) masses. Numerical results are obtained for sloshing frequencies and masses in horizontal circular cylindrical, spherical, and conical vessels. It is shown that, in those cases, consideration of only the first sloshing mass is adequate to represent the dynamic behavior of the liquid container quite accurately. For the case of a horizontal cylinder subjected to longitudinal external excitation, its equivalence with an appropriate rectangular container is demonstrated. The numerical results are in very good comparison with available semi-analytical or numerical solutions and available experimental data.

1.
Abramson
,
H. N.
, 1966, “
The Dynamic Behavior of Liquids in Moving Containers
,” Southwest Research Institute, Washington, DC,
NASA
Report No. SP-106.
2.
Ibrahim
,
R. A.
,
Pilipchuk
,
V. N.
, and
Ikeda
,
T.
, 2001, “
Recent Advances in Liquid Sloshing Dynamics
,”
Appl. Mech. Rev.
0003-6900,
54
(
2
), pp.
133
177
.
3.
Housner
,
G. W.
, 1957, “
Dynamic Pressures on Accelerated Fluid Containers
,”
Bull. Seismol. Soc. Am.
0037-1106,
47
, pp.
15
35
.
4.
Veletsos
,
A. S.
, 1974, “
Seismic Effects in Flexible Liquid Storage Tanks
,”
Proceedings of the Fifth World Conference in Earthquake Engineering
, Rome, Italy, Vol.
1
, pp.
630
639
.
5.
Haroun
,
M. A.
, and
Housner
,
G. W.
, 1981, “
Earthquake Response of Deformable Liquid Storage Tanks
,”
ASME J. Appl. Mech.
0021-8936,
48
, pp.
411
417
.
6.
Haroun
,
M. A.
, 1983, “
Vibration Studies and Tests of Liquid Storage Tanks
,”
Earthquake Eng. Struct. Dynam.
,
11
, pp.
179
206
. 0098-8847
7.
Natsiavas
,
S.
, 1988, “
An Analytical Model for Unanchored Fluid-Filled Tanks Under Base Excitation
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
648
653
.
8.
Veletsos
,
A. S.
, and
Tang
,
Y.
, 1990, “
Soil-Structure Interaction Effects for Laterally Excited Liquid Storage Tanks
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
19
, pp.
473
496
.
9.
Malhotra
,
P. K.
, 1995, “
Base Uplifting Analysis of Flexibly Supported Liquid-Storage Tanks
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
24
(
12
), pp.
1591
1607
.
10.
Fischer
,
F. D.
, 1979, “
Dynamic Fluid Effects in Liquid-Filled Flexible Cylindrical Tanks
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
7
, pp.
587
601
.
11.
Chen
,
W.
,
Haroun
,
M. A.
, and
Liu
,
F.
, 1996, “
Large Amplitude Liquid Sloshing in Seismically Excited Tanks
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
25
(
7
), pp.
653
669
.
12.
Rammerstorfer
,
F. G.
,
Fisher
,
F. D.
, and
Scharf
,
K.
, 1990, “
Storage Tanks Under Earthquake Loading
,”
Appl. Mech. Rev.
0003-6900,
43
(
11
), pp.
261
283
.
13.
American Petroleum Institute
, 2000, “
Seismic Design of Storage Tanks
,”
Welded Steel Tanks for Oil Storage
,
API 650, Annex E
,
Washington, DC
.
14.
Comité Européen de Normalization
, 2006, “
Part 4: Silos, Tanks and Pipelines
,”
Eurocode 8. Design of Structures for Earthquake Resistance
,
EN 1998-4, CEN
,
Brussels
.
15.
Priestley
,
M. J. N.
,
Davidson
,
B. J.
,
Honey
,
G. D.
,
Hopkins
,
D. C.
,
Martin
,
R. J.
,
Ramsey
,
G.
,
Vessey
,
J. V.
, and
Wood
,
J. H.
, 1986, “
Seismic Design of Storage Tanks
,” Recommendations of a Study Group of the New Zealand National Society for Earthquake Engineering.
16.
Budiansky
,
B.
, 1960, “
Sloshing of Liquids in Circular Canals and Spherical Tanks
,”
J. Aerosp. Sci.
0095-9820,
27
(
3
), pp.
161
173
.
17.
Moiseev
,
N. N.
, and
Petrov
,
A. A.
, 1966, “
The Calculation of Free Oscillations of a Liquid in a Motionless Container
,”
Adv. Appl. Mech.
0065-2156,
9
, pp.
91
154
.
18.
McIver
,
P.
, 1989, “
Sloshing Frequencies for Cylindrical and Spherical Containers Filled to an Arbitrary Depth
,”
J. Fluid Mech.
0022-1120,
201
, pp.
243
257
.
19.
McIver
,
P.
, and
McIver
,
M.
, 1993, “
Sloshing Frequencies of Longitudinal Modes for a Liquid Contained in a Trough
,”
J. Fluid Mech.
0022-1120,
252
, pp.
525
541
.
20.
Evans
,
D. V.
, and
Linton
,
C. M.
, 1993, “
Sloshing Frequencies
,”
Q. J. Mech. Appl. Math.
0033-5614,
46
, pp.
71
87
.
21.
Patkas
,
L. A.
, and
Karamanos
,
S. A.
, 2007, “
Variational Solutions of Liquid Sloshing in Horizontal-Cylindrical and Spherical Containers
,”
J. Eng. Mech.
0733-9399,
133
(
6
), pp.
641
655
.
22.
Hunt
,
B.
, 1987, “
Seismic-Generated Water Waves in Axisymmetric Tanks
,”
J. Eng. Mech.
0733-9399,
113
(
5
), pp.
653
670
.
23.
Lay
,
K. S.
, 1993, “
Seismic Coupled Modeling of Axisymmetric Tanks Containing Liquid
,”
J. Eng. Mech.
0733-9399,
119
(
9
), pp.
1747
1761
.
24.
Aslam
,
M.
, 1981, “
Finite Element Analysis of Earthquake-Induced Sloshing in Axisymmetric Tanks
,”
Int. J. Numer. Methods Eng.
0029-5981,
17
, pp.
159
170
.
25.
Subhash Babu
,
S.
, and
Bhattacharyya
,
S. K.
, 1996, “
Finite Element Analysis of Fluid-Structure Interaction Effect on Liquid Retaining Structures Due to Sloshing
,”
Comput. Struct.
0045-7949,
59
(
6
), pp.
1165
1171
.
26.
Hwang
,
I. T.
, and
Ting
,
K.
, 1987, “
Dynamic Analysis of Liquid Storage Tanks Including Hydrodynamic Interaction by Boundary Element Method
,”
Ninth International Conference on Structural Mechanics in Reactor Technology
, Lausanne, Switzerland, pp.
429
434
.
27.
Koh
,
H. M.
,
Kim
,
J. K.
and
Park
,
J. -H.
, 1998, “
Fluid-Structure Interaction Analysis of 3-D Rectangular Tanks by Variationally Coupled BEM-FEM and Comparison With Test Results
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
27
, pp.
109
124
.
28.
Dutta
,
S.
, and
Laha
,
M. K.
, 2000, “
Analysis of the Small Amplitude Sloshing of a Liquid in a Rigid Container of Arbitrary Shape Using a Low-Order Boundary Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
, pp.
1633
1648
.
29.
Gedikli
,
A.
, and
Ergüven
,
M. E.
, 2003, “
Evaluation of Sloshing Problem by Variational Boundary Element Method
,”
Eng. Anal. Boundary Elem.
0955-7997,
27
, pp.
935
943
.
30.
McCarty
,
J. L.
, and
Stephens
,
D.
, 1960, “
Investigation of the Natural Frequencies of Fluids in Spherical and Cylindrical Tanks
,” Report
NASA
TN D-252, Washington, DC.
31.
Kana
,
D. D.
, 1982, “
Status and Research Needs for Prediction of Seismic Response in Liquid Containers
,”
Nucl. Eng. Des.
0029-5493,
69
, pp.
205
221
.
32.
Kobayashi
,
N.
,
Mieda
,
T.
,
Shibata
,
H.
, and
Shinozaki
,
Y.
, 1989, “
A Study of the Liquid Slosh Response in Horizontal Cylindrical Tanks
,”
ASME J. Pressure Vessel Technol.
0094-9930,
111
(
1
), pp.
32
38
.
33.
Papaspyrou
,
S.
,
Valougeorgis
,
D.
, and
Karamanos
,
S. A.
, 2004, “
Sloshing Effects in Half-Full Horizontal Cylindrical Vessels Under Longitudinal Excitation
,”
ASME J. Appl. Mech.
0021-8936,
126
(
2
). pp.
255
265
.
34.
Fox
,
D. W.
, and
Kutler
,
J. R.
, 1983, “
Sloshing Frequencies
,”
Z. Angew. Math. Phys.
0044-2275,
34
, pp.
669
696
.
35.
Levin
,
E.
, 1963, “
Oscillations of a Fluid in a Rectilinear Conical Container
,”
AIAA J.
0001-1452,
1
(
6
), p.
1447
.
36.
Gavrilyuk
,
I. P.
,
Lukovsky
,
I. A.
, and
Timokha
,
A. N.
, 2005, “
Linear and Nonlinear Sloshing in a Circular Conical Tank
,”
Fluid Dyn. Res.
0169-5983,
37
, pp.
399
429
.
You do not currently have access to this content.