Abstract
Several upper-bound limit-load multipliers based on elastic modulus adjustment procedures converge to the lowest upper-bound value after several linear elastic iterations. However, pressure component design requires the use of lower-bound multipliers. Local limit loads are obtained in this paper by invoking the concept of “reference volume” in conjunction with the multiplier method. The lower-bound limit loads obtained compare well to inelastic finite element analysis results for several pressure component configurations.
1.
Jones
, G. L.
, and Dhalla
, A. K.
, 1981, “Classification of Clamp Induced Stresses in Thin Walled Pipe
,” PVP (Am. Soc. Mech. Eng.)
0277-027X, 81
, pp. 17
–23
.2.
Marriott
, D. L.
, 1988, “Evaluation of Deformation or Load Control of Stress under Inelastic Conditions Using Elastic Finite Element Stress Analysis
,” PVP (Am. Soc. Mech. Eng.)
0277-027X, 136
, pp. 3
–9
.3.
Seshadri
, R.
, and Fernando
, C. P. D.
, 1992, “Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method
,” ASME J. Pressure Vessel Technol.
0094-9930, 114
, pp. 201
–208
.4.
Mackenzie
, D.
, and Boyle
, J. T.
, 1993, “A Method of Estimating Limit Loads Using Elastic Analysis, I: Simple Examples
,” Int. J. Pressure Vessels Piping
0308-0161, 53
, pp. 77
–85
.5.
Seshadri
, R.
, 1991, “The Generalized Local Stress Strain (GLOSS) Analysis—Theory and Applications
,” ASME J. Pressure Vessel Technol.
0094-9930, 113
, pp. 219
–227
.6.
Ponter
, A. R. S.
, Fuschi
, P.
, and Engelhardt
, M.
, 2000, “Limit Analysis for a General Class of Yield Conditions
,” Eur. J. Mech. A/Solids
0997-7538, 19
, pp. 401
–421
.7.
Ponter
, A. R. S.
, and Engelhardt
, M.
, 2000, “Shakedown Limit for a General Yield Condition
,” Eur. J. Mech. A/Solids
0997-7538, 19
, pp. 423
–445
.8.
Seshadri
, R.
, and Indermohan
, H.
, 2004, “Lower Bound Limit Load Determination: The mβ-Multiplier Method
,” ASME J. Pressure Vessel Technol.
0094-9930, 126
, pp. 237
–240
.9.
Seshadri
, R.
, and Mangalaramanan
, S. P.
, 1997, “Lower Bound Limit Load Using Variational Concepts: The mα-Method
,” Int. J. Pressure Vessels Piping
0308-0161, 71
, pp. 93
–106
.10.
Adibi-Asl
, R.
, Fanous
, I. F. Z.
, and Seshadri
, R.
, 2006, “Elastic Modulus Adjustment Procedures—Improved Convergence Schemes
,” Int. J. Pressure Vessels Piping
0308-0161, 83
, pp. 154
–160
.11.
Calladine
, C. R.
, and Drucker
, D. C.
, 1962, “Nesting Surfaces for Constant Rate of Energy Dissipation in Creep
,” Q. Appl. Math.
0033-569X, 20
, pp. 79
–84
.12.
Calladine
, C. R.
, 1969, Engineering Plasticity
, Pergamon Press
, London
.13.
Mura
, T.
, Rimawi
, W. H.
, and Lee
, S. L.
, 1965, “Extended Theorems of Limit Analysis
,” Q. Appl. Math.
0033-569X, 23
, pp. 171
–179
.14.
Pan
, L.
, and Seshadri
, R.
, 2002, “Limit Load Estimation Using Plastic Flow Parameter in Repeated Elastic Finite Element Analyses
,” ASME J. Pressure Vessel Technol.
0094-9930, 124
, pp. 433
–439
.15.
Reinhardt
, W. D.
, and Seshadri
, R.
, 2003, “Limit Load Bounds for the mα Multipliers
,” ASME J. Pressure Vessel Technol.
0094-9930, 125
, pp. 11
–18
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.