High explosive reactions can be caused by three general energy deposition processes: impact ignition by frictional and/or shear heating; bulk thermal heating; and shock compression. The violence of the subsequent reaction varies from benign slow combustion to catastrophic detonation of the entire charge. The degree of violence depends on many variables, including the rate of energy delivery, the physical and chemical properties of the explosive, and the strength of the confinement surrounding the explosive charge. The current state of experimental and computer-modeling research on the violence of impact, thermal, and shock-induced reactions is briefly reviewed in this paper.

1.
Dick, J. J., Martinez, A. R., and Hixson, R. S., 1998, “Plane Impact Response of PBX 9501 Below 2 GPa,” Eleventh International Detonation Symposium, Office of Naval Research, ONR 33300-5, Aspen, CO, pp. 317–324.
2.
Tarver
,
C.
,
Urtiew
,
P.
,
Chidester
,
S.
, and
Green
,
L.
,
1993
, “
Shock Initiation of LX-10
,”
Propellants, Explos., Pyrotech.
,
18
, pp.
117
127
.
3.
Field
,
J. E.
,
Bourne
,
N. K.
,
Palmer
,
S. J. P.
, and
Walley
,
S. M.
,
1992
, “
Hot Spots
,”
Philos. Trans. R. Soc. London, Ser. A
,
339
, pp.
269
299
.
4.
Chidester, S. K., Green, L. G., and Lee, C. G., 1993, “A Frictional Work Predictive Method for the Initiation of Solid High Explosives From Low Pressure Impacts,” Tenth International Detonation Symposium, Office of Naval Research ONR 33395-12, Boston, MA, pp. 785–792.
5.
Chidester, S. K., Tarver, C. M., and Lee, C. G., 1998, “Impact Ignition of New and Aged Solid Explosives,” Shock Compression of Condensed Matter-1997, AIP Conf. Proc. 429, S. C. Schmidt et al., eds., AIP, New York, pp. 707–710.
6.
Chidester, S. K., Tarver, C. M., and Garza, R., 1998, “Low Amplitude Impact Testing and Analysis of Pristine and Aged Solid High Explosives,” Eleventh (International) Symposium on Detonation, Office of Naval Research ONR 33300-5, Arlington, VA, pp. 93–100.
7.
Chidester, S. K., Tarver, C. M., DePiero, A. H., and Garza, R. G., 2000, “Single and Multiple Impact of New and Aged High Explosives in the Steven Impact Test,” Shock Compression of Condensed Matter-1999, AIP Conf. Proc. 505, M. D. Furnish, L. C. Chhabildas, and R. S. Hixson, eds., AIP, New York, pp. 663–666.
8.
Niles, A. M., Garcia, F., Greenwood, D. W., Forbes, J. W., Tarver, C. M., Chidester, S. K., Garza, R. G., and Switzer, L. L., 2002, “Measurement of Low Level Explosives Reaction in Gauged Multi-Dimensional Steven Impact Tests,” Shock Compression of Condensed Matter-2001, AIP Conf. Proc. 620, M. D. Furnish, N. N. Thadhani, and Y. Horie, eds., AIP, New York, pp. 886–889.
9.
Vandersall, K. S., Chidester, S. K., Forbes, J. W., Garcia, F., Greenwood, D. W., Switzer, L. L., and Tarver, C. M., 2004, “Experimental and Modeling Studies of Crush, Puncture, and Perforation Scenarios in the Steven Impact Test,” Twelfth International Detonation Symposium, Office of Naval Research, San Diego, CA, August 2002 (in press).
10.
Switzer, L. L., Vandersall, K. S., Chidester, S. K., Greenwood, D. W., and Tarver, C. M., 2004, “Threshold Studies of Heated HMX_Based Energetic Material Targets Using the Steven Impact Test,” Shock Compression of Condensed Matter-2003, M. D. Furnish, ed., AIP, New York, pp. 1045–1048.
11.
Vandersall, K. S., Murty, S. S., Chidester, S. K., Forbes, J. W., Garcia, F., Greenwood, D. W., and Tarver, C. M., 2004, “Investigation of Steven Impact Test Using a Transportation Hook Projectile With Gauged Experiments and 3D Modeling,” Shock Compression of Condensed Matter-2003, M. D. Furnish, ed., AIP, New York, pp. 1057–1060.
12.
Idar, D. J., Lucht, R. A., Straight, J. W., Scammon, R. J., Browning, R. V., Middleditch, J., Dienes, J. K., Skidmore, C. B., and Buntain, G. A., 1998, “PBX 9501 High Explosive Violent Reaction Experiments,” Eleventh International Detonation Symposium, Office of Naval Research ONR 33300-5, Aspen, CO, pp. 101–110.
13.
Scammon, R. J., Browning, R. V., Middleditch, J., Dienes, J. K., Haverman, K. S., and Bennett, J. G., 1998, “Structural Analysis and Prediction of Low Order Reaction,” Eleventh International Detonation Symposium, Office of Naval Research ONR 33300-5, Aspen, CO, pp. 111–118.
14.
Browning, R. V., 1996, “Microstructural Model of Mechanical Initiation of Energetic Materials,” Shock Compression of Condensed Matter-1995, S. C. Schmidt and W. C. Tao, eds., AIP, New York, 1996, pp. 405–408.
15.
Green, L. G., James, E., Lee, E. L., Chambers, E. S., Tarver, C. M., Westmoreland, C., Weston, A. M., and Brown, B., 1981, “Delayed Detonation in Propellants From Low Velocity Impact,” Seventh Symposium (International) on Detonation, Naval Surface Weapons Center MP82-334, Annapolis, MD, pp. 256–264.
16.
Chidester
,
S. K.
,
Tarver
,
C. M.
,
Green
,
L. G.
, and
Urtiew
,
P. A.
,
1997
, “
On the Violence of Thermal Explosion
,”
Combust. Flame
,
110
, pp.
264
280
.
17.
Tarver, C. M., Hallquist, J. O., and Erickson, L. M., 1985, “Modeling Short Pulse Duration Shock Initiation of Solid Explosives,” Eighth Symposium (International) on Detonation, Naval Surface Weapons Center NSWC MP86-194, Albuquerque, NM, pp. 951–961.
18.
McGuire, R. R., and Tarver, C. M., 1981, “Chemical Decomposition Models for the Thermal Explosion of Confined HMX, TATB, RDX, and TNT Explosives,” Seventh Symposium (International) on Detonation, Naval Surface Weapons Center MP82-334, Annapolis, MD, pp. 56–64.
19.
Tarver
,
C. M.
, and
Tran
,
T. D.
,
2004
, “
Thermal Decomposition Models for HMX-Based Plastic Bonded Explosives
,”
Combust. Flame
,
137
, pp.
50
62
.
20.
Maienschein, J. L., and Chandler, J. B., 1998, “Burn Rates of Pristine and Damaged Explosives at Elevated Pressures and Temperatures,” Eleventh International Detonation Symposium, Office of Naval Research, ONR 33300-5, Aspen, CO, pp. 872–880.
21.
Esposito
,
A.
,
Farber
,
D.
,
Reaugh
,
J.
, and
Zaug
,
J.
,
2003
, “
Reaction Propagation Rates in HMX at High Pressure
,”
Propellants, Explos., Pyrotech.
,
28
, pp.
83
88
.
22.
Foltz
,
M. F.
,
1993
, “
Pressure Dependence of the Reaction Propagation Rate of TATB at High Pressure
,”
Propellants, Explos., Pyrotech.
,
18
, pp.
210
216
.
23.
Nichols, A. L., and Tarver, C. M., 2004, “A Statistical Hot Spot Reactive Flow Model for Shock Initiation and Detonation of Solid Explosives,” Twelfth International Detonation Symposium, Office of Naval Research, San Diego, CA, August 2002 (in press).
24.
Nichols, A. L., Tarver, C. M., and McGuire, E. M., 2004, “ALE3D Statistical Hot Spot Model Results for LX-17,” Shock Compression of Condensed Matter-2003, M. D. Furnish, ed., AIP, New York, pp. 397–400.
25.
Reaugh
,
J. E.
,
2002
, “
Grain Scale Dynamics in Explosives
,”
LLNL Report
UC-ID-150388, September 2002.
26.
Wardell, J., and Maienschein, J., 2004, “The Scaled Thermal Explosion Experiment,” Twelfth International Detonation Symposium, Office of Naval Research, San Diego, CA, August 2002 (in press).
27.
Garcia, F., Forbes, J. W., Tarver, C. M., Urtiew, P. A., Greenwood, D. W., and Vandersall, K. S., 2002, “Measurement of Low Level Explosives Reaction in Gauged Multi-Dimensional Steven Impact Tests,” Shock Compression of Condensed Matter-2001, AIP Conf. Proc. 620, M. D. Furnish, N. N. Thadhani, and Y. Horie, eds., AIP, New York, pp. 882–885.
28.
Forbes, J. W., Garcia, F., Tarver, C. M., and Greenwood, D. W., 2004, “Pressure Wave Measurements During Thermal Explosion of HMX-Based High Explosives,” Twelfth International Detonation Symposium, Office of Naval Research, San Diego, CA, August 2002 (in press).
29.
Garcia, F., Vandersall, K. S., Forbes, J. W., Tarver, C. M., and Greenwood, D. W., 2004, “Pressure Wave Measurements Resulting From Thermal Cook-Off of the HMX-Based High Explosive LX-04,” Shock Waves in Condensed Matter-2003, M. D. Furnish, ed., AIP, New York, pp. 947–950.
30.
Tarver
,
C. M.
,
Chidester
,
S. K.
, and
Nichols
,
A. L.
,
1996
, “
Critical Conditions for Impact- and Shock-Induced Hot Spots in Solid Explosives
,”
J. Phys. Chem.
,
100
, pp.
5794
5799
.
31.
Campbell, A. W., and Travis, J. R., 1985, “The Shock Desensitization of PBX-9404 and Composition B-3,” Eighth Symposium (International) on Detonation, Naval Surface Weapons Center NSWC MP 86-194, Albuquerque, NM, pp. 1057–1068.
32.
Tarver, C. M., Cook, T. M., Urtiew, P. A., and Tao, W. C., 1993, “Multiple Shock Initiation of LX-17,” Tenth Symposium (International) on Detonation, Office of Naval Research ONR 33395-12, Boston, MA, pp. 696–703.
33.
Yoh, J. J., and McClelland, 2004, “Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds,” Shock Waves in Condensed Matter-2003, M. D. Furnish, ed., AIP, New York, pp. 425–428.
34.
Gustavsen, R. L., Sheffield, S. A., Alcon, R. R., Tarver, C. M., Forbes, J. W., and Garcia, F., 2002, “Embedded Electromagnetic Gauge Measurements and Modeling of Shock Initiation in the TATB Based Explosives LX-17 and PBX 9502,” Shock Compression of Condensed Matter-2001, N. N. Thadhani and Y. Horie, eds., AIP, New York, pp. 1019–1022.
35.
Sheffield, S. A., Gustavsen, R. L., Hill, L. G., and Alcon, R. R., 1998, “Electromagnetic Gauge Measurements of Shock Initiating PBX 9501 and PBX 9502 Explosives,” Eleventh International Detonation Symposium, Office of Naval Research, ONR 33300-5, Aspen, CO, pp. 451–458.
36.
Gustavsen, R. L., Sheffield, S. A., and Alcon, R. R., 1998, “Progress in Measuring Detonation Wave Profiles in PBX 9501,” Eleventh International Detonation Symposium, Office of Naval Research, ONR 33300-5, Aspen, CO, pp. 821–827.
37.
Tarver, C. M., Forbes, J. W., Garcia, F., and Urtiew, P. A., 2002, “Manganin Gauge and Reactive Flow Modeling Study of the Shock Initiation of PBX 9501,” Shock Compression of Condensed Matter-2001, N. N. Thadhani and Y. Horie, eds., AIP, New York, pp. 1043–1046.
38.
Tarver
,
C. M.
,
Kury
,
J. W.
, and
Breithaupt
,
R. D.
,
1997
, “
Detonation Waves in Triaminotrinitrobenzene
,”
J. Appl. Phys.
,
82
, pp.
3771
3782
.
39.
Kury
,
J. W.
,
Breithaupt
,
R. D.
, and
Tarver
,
C. M.
,
1999
, “
Detonation Waves in Trinitrotoluene
,”
Shock Waves
,
9
, pp.
227
237
.
40.
Tarver
,
C. M.
,
1997
, “
Multiple Roles of Highly Vibrationally Excited Molecules in the Reaction Zones of Detonation Waves
,”
J. Phys. Chem.
,
101
, pp.
4845
4851
.
You do not currently have access to this content.