Abstract

Ocean current forecast is vital for developing tidal energy and construction of offshore structures in the strait waters. This paper developed a short-term ocean current forecasting approach, which consists of the measured data preprocessing, kernel function selection, and data forecasting using the warped Gaussian process (WGP). A preprocessing using the wavelet thresholding method was proposed to enhance the quality of the measured raw data. The theory of WGP and the commonly used kernel functions were briefly introduced. The sliding time window and one-step ahead strategies were employed to increase the accuracy of predictions. Observations collected during an ocean current measurement campaign executed in a strait water on the coast of the East China Sea were used as an example data set. The current velocity and profile were forecasted and validated using the example data set as an illustration of the framework of the developed approach. The effects of window length, kernel function, and time interval on the WGP forecasting efficiency and precision were investigated. The forecasting performance of the developed WGP model was discussed by comparing it with the standard Gaussian process prediction (GP) model. The current profile with a 95% confidence interval was also predicted by the developed WGP model at a certain point. The validation shows that the developed model is efficient in the short-term ocean current forecast.

References

1.
Rahmstorf
,
S.
,
2003
, “
Thermohaline Circulation: The Current Climate
,”
Nature
,
421
(
6924
), pp.
699
699
.
2.
Polton
,
J. A.
,
Lewis
,
D. M.
, and
Belcher
,
S. E.
,
2005
, “
The Role of Wave-Induced Coriolis-Stokes Forcing on the Wind-Driven Mixed Layer
,”
J. Phys. Oceanogr.
,
35
(
4
), pp.
444
457
.
3.
DNV
,
2007
,
Design of Offshore Wind Turbine Structures, Offshore Standard DNV-OS-J101
.
4.
Garrett
,
C.
, and
Cummins
,
P.
,
2005
, “
The Power Potential of Tidal Currents in Channels
,”
Proc. R. Soc. A
,
461
(
2060
), pp.
2563
2572
.
5.
Wang
,
P.
,
Tian
,
X.
,
Peng
,
T.
, and
Luo
,
Y.
,
2018
, “
A Review of the State-of-the-Art Developments in the Field Monitoring of Offshore Structures
,”
Ocean Eng.
,
147
, pp.
148
164
.
6.
Liu
,
M.
,
Wu
,
W.
,
Tang
,
D.
,
Ma
,
H.
, and
Naess
,
A.
,
2018
, “
Current Profile Analysis and Extreme Value Prediction in the LH11-1 Oil Field of the South China Sea Based on Prototype Monitoring
,”
Ocean Eng.
,
153
, pp.
60
70
.
7.
Rajasekaran
,
S.
,
Thiruvenkatasamy
,
K.
, and
Lee
,
T.-L.
,
2006
, “
Tidal Level Forecasting Using Functional and Sequential Learning Neural Networks
,”
Appl. Math. Model.
,
30
(
1
), pp.
85
103
.
8.
Furst
,
G.
, and
Sud
,
S.
,
1978
, “
Raw Tidal Energy Absorption Capability of a Power System
,”
IEEE Trans. Power Appar. Syst.
,
PAS-97
(
5
), pp.
1910
1917
.
9.
Draper
,
S.
,
Houlsby
,
G. T.
,
Oldfield
,
M. L. G.
, and
Borthwick
,
A. G. L.
,
2010
, “
Modelling Tidal Energy Extraction in a Depth-Averaged Coastal Domain
,”
IET Renew. Power Gener.
,
4
(
6
), pp.
545
554
.
10.
Zhou
,
Z. B.
,
Benbouzid
,
M.
,
Charpentier
,
J. F.
,
Scuiller
,
F.
, and
Tang
,
T. H.
,
2013
, “
A Review of Energy Storage Technologies for Marine Current Energy Systems
,”
Renewable Sustainable. Energy Rev.
,
18
, pp.
390
400
.
11.
Ti
,
Z.
,
Wei
,
K.
,
Li
,
Y.
, and
Xu
,
B.
,
2020
, “
Effect of Wave Spectral Variability on Stochastic Response of a Long-Span Bridge Subjected to Random Waves During Tropical Cyclones
,”
J. Bridge Eng.
,
25
(
1
), p.
04019118
.
12.
El-Reedy
,
M. A.
,
2014
,
Marine Structural Design Calculations
,
Butterworth-Heinemann
,
Oxford, UK
.
13.
Wei
,
K.
,
Liu
,
Q.
, and
Qin
,
S.
,
2020
, “
Nonlinear Assessment of Offshore Steel Trestle Subjected to Wave and Current Loads
,”
Ships Offshore Struct.
,
15
(
5
), pp.
479
491
.
14.
Cheng
,
Z.
,
Gao
,
Z.
, and
Moan
,
T.
,
2019
, “
Numerical Modeling and Dynamic Analysis of a Floating Bridge Subjected to Wind, Wave, and Current Loads
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
1
), p.
011601
.
15.
DNV
,
2004
,
Global Performance Analysis of Deepwater Floating Structures, Recommended Practice DNV-RP-F205
.
16.
Li
,
S. D.
,
Liu
,
L. T.
,
Cai
,
S.
, and
Wang
,
G. C.
,
2019
, “
Tidal Harmonic Analysis and Prediction With Least-Squares Estimation and Inaction Method
,”
Estuarine, Coastal Shelf Sci.
,
220
, pp.
196
208
.
17.
Darwin
,
G. H.
,
1893
, “
On an Apparatus for Facilitating the Reduction of Tidal Observations
,”
Proc. R. Soc. London
,
52
(
1
), pp.
345
389
.
18.
Doodson
,
A. T.
,
1921
, “
The Harmonic Development of the Tide-Generating Potential
,”
Proc. R. Soc. A
,
100
(
704
), pp.
305
329
.
19.
Doodson
,
A. T.
,
1957
, “
The Analysis and Prediction of Tides in Shallow Water
,”
Int. Hydrogr. Rev.
,
33
(
1
), pp.
85
126
.
20.
Sarkar
,
D.
,
Osborne
,
M. A.
, and
Adcock
,
T. A. A.
,
2018
, “
Prediction of Tidal Currents Using Bayesian Machine Learning
,”
Ocean Eng.
,
158
, pp.
221
231
.
21.
Roberts
,
S.
,
Osborne
,
M.
,
Ebden
,
M.
,
Reece
,
S.
,
Gibson
,
N.
, and
Aigrain
,
S.
,
2013
, “
Gaussian Processes for Time-Series Modelling
,”
Philos. Trans. R. Soc., A
,
371
(
1984
), p.
20110550
.
22.
Rasmussen
,
C. E.
, and
Williams
,
C. K.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
23.
Kou
,
P.
,
Gao
,
F.
,
Guan
,
X.
, and
Wu
,
J.
,
2012
, “
Prediction Intervals for Wind Power Forecasting: Using Sparse Warped Gaussian Process
,”
2012 IEEE Power and Energy Society General Meeting.
24.
Sarkar
,
D.
,
Osborne
,
M. A.
, and
Adcock
,
T. A. A.
,
2019
, “
Spatiotemporal Prediction of Tidal Currents Using Gaussian Processes
,”
J. Geophys. Res. Oceans
,
124
(
4
), pp.
2697
2715
.
25.
Bracco
,
A.
,
Chassignet
,
E. P.
,
Garraffo
,
Z. D.
, and
Provenzale
,
A.
,
2003
, “
Lagrangian Velocity Distributions in a High-Resolution Numerical Simulation of the North Atlantic
,”
J. Atmos. Oceanic. Technol.
,
20
(
8
), pp.
1212
1220
.
26.
Ashkenazy
,
Y.
, and
Gildor
,
H.
,
2011
, “
On the Probability and Spatial Distribution of Ocean Surface Currents
,”
J. Phys. Oceanogr.
,
41
(
12
), pp.
2295
2306
.
27.
Snelson
,
E.
,
Ghahramani
,
Z.
, and
Rasmussen
,
C.
,
2003
, “
Warped Gaussian Processes
,”
Adv. Neural Inf. Process. Syst.
,
16
, pp.
337
344
.
28.
Kou
,
P.
,
Liang
,
D.
,
Gao
,
F.
, and
Gao
,
L.
,
2014
, “
Probabilistic Wind Power Forecasting With Online Model Selection and Warped Gaussian Process
,”
Energy Convers. Manage.
,
84
, pp.
649
663
.
29.
Mateo-Sanchis
,
A.
,
Munoz-Mari
,
J.
,
Perez-Suay
,
A.
, and
Camps-Valls
,
G.
,
2018
, “
Warped Gaussian Processes in Remote Sensing Parameter Estimation and Causal Inference
,”
IEEE Geosci. Remote Sens. Lett.
,
15
(
11
), pp.
1647
1651
.
30.
Sawant
,
M. M.
, and
Bhurchandi
,
K.
,
2019
, “
Hierarchical Facial age Estimation Using Gaussian Process Regression
,”
IEEE Access
,
7
, pp.
9142
9152
.
31.
Chen
,
J.
,
Li
,
X.
,
Guo
,
M.
,
Chen
,
L.
,
Lin
,
M.
, and
Chen
,
J.
,
2016
, “
Analysis of the Observed Current Data Near Pingtan Islands
,”
Mar. Forecasts
,
33
(
4
), pp.
46
52
.
32.
Wei
,
K.
,
Imani
,
H.
, and
Qin
,
S.
,
2021
, “
Parametric Wave Spectrum Model for Typhoon-Generated Waves Based on Field Measurements in Nearshore Strait Water
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
5
), p.
051201
.
33.
Pawlowicz
,
R.
,
Beardsley
,
B.
, and
Lentz
,
S.
,
2002
, “
Classical Tidal Harmonic Analysis Including Error Estimates in MATLAB Using T-TIDE
,”
Comput. Geosci.
,
28
(
8
), pp.
929
937
.
34.
Jay
,
D. A.
, and
Flinchem
,
E. P.
,
1999
, “
A Comparison of Methods for Analysis of Tidal Records Containing Multi-Scale Non-Tidal Background Energy
,”
Cont. Shelf Res.
,
19
(
13
), pp.
1695
1732
.
35.
Donoho
,
D. L.
,
1995
, “
De-noising by Soft-Thresholding
,”
IEEE Trans. Inf. Theory
,
41
(
3
), pp.
613
627
.
36.
Daubechies
,
I.
,
1990
, “
The Wavelet Transform, Time-Frequency Localization and Signal Analysis
,”
IEEE Trans. Inf. Theory
,
36
(
5
), pp.
961
1005
.
37.
Wang
,
D.
,
Singh
,
V. P.
,
Shang
,
X.
,
Ding
,
H.
,
Wu
,
J.
,
Wang
,
L.
,
Zou
,
X.
,
Chen
,
Y.
,
Chen
,
X.
,
Wang
,
S.
, and
Wang
,
Z.
,
2014
, “
Sample Entropy-Based Adaptive Wavelet De-Noising Approach for Meteorologic and Hydrologic Time Series
,”
J. Geophys. Res. D: Atmos.
,
119
(
14
), pp.
8726
8740
.
38.
Sang
,
Y.
,
Wang
,
D.
,
Wu
,
J. C.
,
Zhu
,
Q.
, and
Wang
,
L.
,
2009
, “
Entropy-Based Wavelet De-noising Method for Time Series Analysis
,”
Entropy
,
11
(
4
), pp.
1123
1147
.
39.
Jahromi
,
M. J.
,
Maswood
,
A. I.
, and
Tseng
,
K. J.
,
2010
, “
Comparison of Different Techniques for Short Term Prediction of Tidal Current Speeds
,”
IEEE Power and Energy Society General Meeting 2010
,
Minneapolis, MN
,
July 25–29
.
40.
Taieb
,
S. B.
,
Bontempi
,
G.
,
Atiya
,
A. F.
, and
Sorjamaa
,
A.
,
2012
, “
A Review and Comparison of Strategies for Multi-Step Ahead Time Series Forecasting Based on the NN5 Forecasting Competition
,”
Expert Syst. Appl.
,
39
(
8
), pp.
7067
7083
.
41.
Rasmussen
,
C. E.
, and
Nickisch
,
H.
,
2010
, “
Gaussian Processes for Machine Learning (GPML) Toolbox
,”
J. Mach. Learn. Res.
,
11
, pp.
3011
3015
.
42.
Box
,
G. E.
,
Jenkins
,
G. M.
,
Reinsel
,
G. C.
, and
Ljung
,
G. M.
,
2015
,
Time Series Analysis: Forecasting and Control
,
John Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.