Abstract

Oscillating water column (OWC) wave energy converters are one of the most widely researched devices for ocean wave energy harvesting. This study investigates the hydrodynamic performance of a shore-fixed OWC device for different bottom slopes using two numerical approaches, namely, computational fluid dynamics (CFD) and boundary integral equation method (BIEM). In the BIEM method, the boundary value problem is solved in two-dimensional Cartesian coordinates using the linear water wave theory. The CFD model uses a numerical wave tank (NWT) built using the volume of fluid (VOF) method. Numerical computations are carried out for different sloped bottom geometries and front wall drafts to analyze the hydrodynamic efficiency. There is a general agreement between CFD and BIEM results in terms of resonating behavior of the device. It is observed that the front wall draft has a more significant effect, a lower draft leading to a wider frequency band for optimum conversion at high efficiency. While the BIEM-based analysis resulted in improved performance curve for few of the steeper slopes, the CFD study predicted a lower peak efficiency for the same slopes due to the consideration of real fluid characteristics. Detailed performance comparisons are presented using the time histories of free surface elevation, chamber pressure, and streamlines at different time instants within the OWC chamber.

References

1.
Evans
,
D.
,
1978
, “
The Oscillating Water Column Wave-Energy Device
,”
IMA J. Appl. Math.
,
22
(
4
), pp.
423
433
. 10.1093/imamat/22.4.423
2.
Falcão
,
A. d. O.
, and
Sarmento
,
A.
,
1980
, “
Wave Generation by a Periodic Surface Pressure and Its Application in Wave-Energy Extraction
,”
Proceedings of the 15th International Congress of Theoritical and Applied Mechanics
,
Toronto, ON, Canada
,
Aug. 17–23
.
3.
Evans
,
D.
,
1982
, “
Wave-Power Absorption by Systems of Oscillating Surface Pressure Distributions
,”
J. Fluid. Mech.
,
114
, pp.
481
499
. 10.1017/S0022112082000263
4.
Alexander
,
H.
,
Watts
,
K.
, and
Graham
,
J.
,
1987
, “
Numerical Analysis of the Oscillating Water Column Wave Energy Extraction System
,”
Math. Model.
,
8
, pp.
524
531
. 10.1016/0270-0255(87)90637-3
5.
Evans
,
D.
, and
Porter
,
R.
,
1995
, “
Hydrodynamic Characteristics of an Oscillating Water Column Device
,”
Appl. Ocean Res.
,
17
(
3
), pp.
155
164
. 10.1016/0141-1187(95)00008-9
6.
Brendmo
,
A.
,
Falnes
,
J.
, and
Lillebekken
,
P.
,
1996
, “
Lineår Modelling of Oscillating Water Columns Including Viscous Loss
,”
Appl. Ocean Res.
,
18
(
2–3
), pp.
65
75
. 10.1016/0141-1187(96)00011-9
7.
Morris-Thomas
,
M. T.
,
Irvin
,
R. J.
, and
Thiagarajan
,
K. P.
,
2006
, “
An Investigation Into the Hydrodynamic Efficiency of an Oscillating Water Column
,”
ASME J. Offshore. Mech. Arct. Eng.
,
129
(
4
), pp.
273
278
. 10.1115/1.2426992
8.
Rezanejad
,
K.
,
Bhattacharjee
,
J.
, and
Soares
,
C. G.
,
2013
, “
Stepped Sea Bottom Effects on the Efficiency of Nearshore Oscillating Water Column Device
,”
Ocean Eng.
,
70
, pp.
25
38
. 10.1016/j.oceaneng.2013.05.029
9.
Teixeira
,
P. R.
,
Davyt
,
D. P.
,
Didier
,
E.
, and
Ramalhais
,
R.
,
2013
, “
Numerical Simulation of an Oscillating Water Column Device Using a Code Based on Navier-Sstokes Equations
,”
Energy
,
61
, pp.
513
530
. 10.1016/j.energy.2013.08.062
10.
López
,
I.
,
Pereiras
,
B.
,
Castro
,
F.
, and
Iglesias
,
G.
,
2014
, “
Optimisation of Turbine-Induced Damping for an OWC Wave Energy Converter Using a RANS–VOF Numerical Model
,”
Appl. Energy.
,
127
, pp.
105
114
. 10.1016/j.apenergy.2014.04.020
11.
Luo
,
Y.
,
Nader
,
J.-R.
,
Cooper
,
P.
, and
Zhu
,
S.-P.
,
2014
, “
Nonlinear 2d Analysis of the Efficiency of Fixed Oscillating Water Column Wave Energy Converters
,”
Renew. Energy
,
64
, pp.
255
265
. 10.1016/j.renene.2013.11.007
12.
Kamath
,
A.
,
Bihs
,
H.
, and
Arntsen
,
Ø. A.
,
2015
, “
Numerical Investigations of the Hydrodynamics of an Oscillating Water Column Device
,”
Ocean Eng.
,
102
, pp.
40
50
. 10.1016/j.oceaneng.2015.04.043
13.
Kamath
,
A.
,
Bihs
,
H.
, and
Arntsen
,
Ø. A.
,
2015
, “
Numerical Modeling of Power Take-Off Damping in an Oscillating Water Column Device
,”
Int. J. Marine Energy
,
10
, pp.
1
16
. 10.1016/j.ijome.2015.01.001
14.
Ashlin
,
S. J.
,
Sundar
,
V.
, and
Sannasiraj
,
S.
,
2016
, “
Effects of Bottom Profile of an Oscillating Water Column Device on Its Hydrodynamic Characteristics
,”
Renew. Energy
,
96
, pp.
341
353
. 10.1016/j.renene.2016.04.091
15.
Ikoma
,
T.
,
Masuda
,
K.
,
Omori
,
H.
,
Osawa
,
H.
, and
Maeda
,
H.
,
2016
, “
Improvement of Performance of Wave Power Conversion Due to the Projecting Walls for Oscillating Water Column Type Wave Energy Converter
,”
ASME J. Offshore. Mech. Arct. Eng.
,
138
(
2
), p.
021902
. 10.1115/1.4032603
16.
Vyzikas
,
T.
,
Deshoulières
,
S.
,
Barton
,
M.
,
Giroux
,
O.
,
Greaves
,
D.
, and
Simmonds
,
D.
,
2017
, “
Experimental Investigation of Different Geometries of Fixed Oscillating Water Column Devices
,”
Renew. Energy
,
104
, pp.
248
258
. 10.1016/j.renene.2016.11.061
17.
Moñino
,
A.
,
Medina-López
,
E.
,
Clavero
,
M.
, and
Benslimane
,
S.
,
2017
, “
Numerical Simulation of a Simple OWC Problem for Turbine Performance
,”
Int. J. Marine Energy
,
20
, pp.
17
32
. 10.1016/j.ijome.2017.11.004
18.
Ning
,
D.
,
Zhou
,
Y.
, and
Zhang
,
C.
,
2018
, “
Hydrodynamic Modeling of a Novel Dual-Chamber OWC Wave Energy Converter
,”
Appl. Ocean Res.
,
78
, pp.
180
191
. 10.1016/j.apor.2018.06.016
19.
Wang
,
R.-q.
,
Ning
,
D.-z.
,
Zhang
,
C.-w.
,
Zou
,
Q.-p.
, and
Liu
,
Z.
,
2018
, “
Nonlinear and Viscous Effects on the Hydrodynamic Performance of a Fixed OWC Wave Energy Converter
,”
Coastal Eng.
,
131
, pp.
42
50
. 10.1016/j.coastaleng.2017.10.012
20.
Mohapatra
,
P.
, and
Sahoo
,
T.
,
2019
, “
Hydrodynamic Performance Analysis of a Shore Fixed Oscillating Water Column Wave Energy Converter in the Presence of Bottom Variations
,”
Proc. Inst. Mech. Eng., Part M: J. Eng. Maritime Environ.
,
234
(
1
), pp.
37
47
.
21.
Prasad
,
D. D.
,
Ahmed
,
M. R.
, and
Lee
,
Y. -H.
,
2020
, “
Effect of Oscillating Water Column Chamber Inclination on the Performance of a Savonius Rotor
,”
ASME J. Offshore. Mech. Arct. Eng.
,
142
(
4
), p.
042002
. 10.1115/1.4046284
22.
Mohapatra
,
P.
,
Bhattacharyya
,
A.
, and
Sahoo
,
T.
,
2020
, “
Performance of a Floating Oscillating Water Column Wave Energy Converter Over a Sloping Bed
,”
Ships Offshore Struct.
, pp.
1
11
. 10.1080/17445302.2020.1772665
23.
Kim
,
M.
, and
Kee
,
S.
,
1996
, “
Flexible-Membrane Wave Barrier. I: Analytic and Numerical Solutions
,”
J. Waterway, Port, Coastal, and Ocean Eng.
,
122
(
1
), pp.
46
53
. 10.1061/(ASCE)0733-950X(1996)122:1(46)
24.
Rezanejad
,
K.
,
Bhattacharjee
,
J.
, and
Soares
,
C. G.
,
2015
, “
Analytical and Numerical Study of Dual-Chamber Oscillating Water Columns on Stepped Bottom
,”
Renew. Energy
,
75
, pp.
272
282
. 10.1016/j.renene.2014.09.050
25.
Sarmento
,
A. J.
, and
Falcão
,
A. d. O.
,
1985
, “
Wave Generation by an Oscillating Surface-Pressure and Its Application in Wave-Energy Extraction
,”
J. Fluid. Mech.
,
150
, pp.
467
485
. 10.1017/S0022112085000234
You do not currently have access to this content.