Abstract

Joining an additively manufactured component to a forged or cast part through welding processes has recently attracted the attention of engineers and scientists. This technique integrates the technical benefits of additive manufacturing (AM) technology with conventional processes that may be more cost-efficient. In this paper, the effect of residual stresses on the mechanical performance of a hybrid welded pipe joint connecting an additively manufactured maraging steel (MS1) pipe segment with a conventional P20 steel tube having an equivalent outside diameter was studied. A sequentially coupled thermo-mechanical continuum finite element (FE) modeling procedure to predict the residual stress state on circumferential pipe hybrid MS1-P20 joints subjected to multi-axial loads was developed and validated. Available experimental data on a welded pipe joint with conventional stainless steel (SUS304) were used to calibrate the model. The FE modeling procedures were further validated for the hybrid MS1-P20 joint. The predicted residual stress state was mapped on the pipe joint with equal and unequal wall thickness joint transitions. The mechanical performance of these pipe joints was evaluated with the application of internal pressure, uniaxial tension, and flexural loads. The major contribution of this study was the proposition of a new concept of hybrid joints, where a significant transition of the load was expected. The new hybrid joint concept was presented to meet the existing design criteria requirements without sacrificing other parameters (e.g., component weight and manufacturing expense) and facilitate the production of hybrid components using AM techniques.

References

1.
Hemmesi
,
K.
,
Farajian
,
M.
, and
Boin
,
M.
,
2017
, “
Numerical Studies of Welding Residual Stresses in Tubular Joints and Experimental Validations by Means of X-ray and Neutron Diffraction Analysis
,”
Mater. Des.
,
126
(
1
), pp.
339
350
. 10.1016/j.matdes.2017.03.088
2.
Deng
,
D.
, and
Murakawa
,
H.
,
2006
, “
Numerical Simulation of Temperature Field and Residual Stress in Multi-Pass Welds in Stainless Steel Pipe and Comparison With Experimental Measurements
,”
Comput. Mater. Sci.
,
37
(
3
), pp.
269
277
. 10.1016/j.commatsci.2005.07.007
3.
Yaghi
,
A.
,
Hyde
,
T.
,
Becker
,
A.
,
Sun
,
W.
,
Hilson
,
G.
,
Simandjuntak
,
S.
,
Flewitt
,
P.
,
Pavier
,
M.
, and
Smith
,
D.
,
2010
, “
A Comparison Between Measured and Modeled Residual Stresses in a Circumferentially Butt-Welded P91 Steel Pipe
,”
ASME J. Press. Vessel Technol.
,
132
(
1
), p.
011206
. 10.1115/1.4000347
4.
Javadi
,
Y.
,
Akhlaghi
,
M.
, and
Najafabadi
,
M. A.
,
2013
, “
Using Finite Element and Ultrasonic Method to Evaluate Welding Longitudinal Residual Stress Through the Thickness in Austenitic Stainless Steel Plates
,”
Mater. Des.
,
45
(
1
), pp.
628
642
. 10.1016/j.matdes.2012.09.038
5.
Radaj
,
D.
,
2012
,
Heat Effects of Welding: Temperature Field, Residual Stress, Distortion
,
Springer Science & Business Media
,
Berlin, Germany
.
6.
Masubuchi
,
K.
,
2013
,
Analysis of Welded Structures: Residual Stresses, Distortion, and Their Consequences
,
Elsevier
,
New York
.
7.
Xu
,
W.
,
Westerbaan
,
D.
,
Nayak
,
S.
,
Chen
,
D.
,
Goodwin
,
F.
, and
Zhou
,
Y.
,
2013
, “
Tensile and Fatigue Properties of Fiber Laser Welded High Strength Low Alloy and DP980 Dual-Phase Steel Joints
,”
Mater. Des.
,
43
(
1
), pp.
373
383
. 10.1016/j.matdes.2012.07.017
8.
Gannon
,
L.
,
Liu
,
Y.
,
Pegg
,
N.
, and
Smith
,
M. J.
,
2012
, “
Effect of Welding-Induced Residual Stress and Distortion on Ship Hull Girder Ultimate Strength
,”
Mar. Struct.
,
28
(
1
), pp.
25
49
. 10.1016/j.marstruc.2012.03.004
9.
Ban
,
H.
,
Shi
,
G.
,
Shi
,
Y.
, and
Wang
,
Y.
,
2012
, “
Overall Buckling Behavior of 460 MPa High Strength Steel Columns: Experimental Investigation and Design Method
,”
J. Constr. Steel Res.
,
74
(
1
), pp.
140
150
. 10.1016/j.jcsr.2012.02.013
10.
Shi
,
G.
,
Zhou
,
W.
,
Bai
,
Y.
, and
Lin
,
C.
,
2014
, “
Local Buckling of 460 MPa High Strength Steel Welded Section Stub Columns Under Axial Compression
,”
J. Constr. Steel Res.
,
100
(
1
), pp.
60
70
. 10.1016/j.jcsr.2014.04.027
11.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Mater. Trans. B
,
15
(
2
), pp.
299
305
. 10.1007/BF02667333
12.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
2000
,
Metal Fatigue in Engineering
,
John Wiley & Sons
,
Hoboken, NJ
.
13.
van Es
,
S. H.
,
Gresnigt
,
A. M.
,
Vasilikis
,
D.
, and
Karamanos
,
S. A.
,
2016
, “
Ultimate Bending Capacity of Spiral-Welded Steel Tubes—Part I: Experiments
,”
Thin-Walled Struct.
,
102
(
1
), pp.
286
304
. 10.1016/j.tws.2015.11.024
14.
Vasilikis
,
D.
,
Karamanos
,
S. A.
,
van Es
,
S. H.
, and
Gresnigt
,
A. M.
,
2016
, “
Ultimate Bending Capacity of Spiral-Welded Steel Tubes—Part II: Predictions
,”
Thin-Walled Struct.
,
102
(
1
), pp.
305
319
. 10.1016/j.tws.2015.11.025
15.
Paik
,
J. K.
, and
Sohn
,
J. M.
,
2012
, “
Effects of Welding Residual Stresses on High Tensile Steel Plate Ultimate Strength: Nonlinear Finite Element Method Investigations
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(
2
), p.
021401
. 10.1115/1.4004510
16.
Farajkhah
,
V.
, and
Soares
,
C. G.
,
2017
,
Progress in the Analysis and Design of Marine Structures
,
G.
Soares
and
Garbatov
, eds.,
London, UK
.
17.
Khedmati
,
M. R.
, and
Rastani
,
M.
,
2008
, “
Ultimate Strength and Ductility Characteristics of Intermittently Welded Stiffened Plates Under In-Plane Axial Compression
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
1
), p.
011002
. 10.1115/1.2783885
18.
Tekgoz
,
M.
,
Garbatov
,
Y.
, and
Soares
,
C. G.
,
2014
,
Analysis and Design of Marine Structures
,
G.
Soares
and
Garbatov
, eds.,
London, UK
.
19.
Baek
,
J.-H.
,
Kim
,
Y.-P.
, and
Kim
,
W.-S.
,
2012
, “
Effect of Taper Angle on Plastic Collapse of Pipe Joint With Different Wall Thickness and Strength
,”
Proceedings of the 2012 9th International Pipeline Conference
,
Calgary, Alberta, Canada
,
Sept. 24–28
, American Society of Mechanical Engineers, pp.
129
137
.
20.
Huo
,
X.
,
Kenny
,
S.
, and
Martens
,
M.
,
2014
, “
Mechanical Integrity Evaluation of Unequal Wall Thickness Transition Joints in Transmission Pipeline
,”
Proceedings of the 2014 10th International Pipeline Conference
,
Calgary, Alberta, Canada
,
Sept. 29–Oct. 3
, American Society of Mechanical Engineers, p. V003T007A006.
21.
Ebrahimi
,
A.
, and
Mohammadi
,
M.
,
2018
, “
Numerical Tools to Investigate Mechanical and Fatigue Properties of Additively Manufactured MS1-H13 Hybrid Steels
,”
Addit. Manuf.
,
23
(
1
), pp.
381
393
. 10.1016/j.addma.2018.07.009
22.
Ebrahimi
,
A.
,
Kenny
,
S.
, and
Mohammadi
,
M.
,
2018
, “
On Bending Performance of Additively Manufactured Steel Catenary Riser (SCR): Effect of Welding Residual Stress on Bending Strain Capacity
,”
Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
,
Madrid, Spain
,
June 17–22
, p. V005T04A070.
23.
Herzog
,
D.
,
Seyda
,
V.
,
Wycisk
,
E.
, and
Emmelmann
,
C.
,
2016
, “
Additive Manufacturing of Metals
,”
Acta Mater.
,
117
(
1
), pp.
371
392
. 10.1016/j.actamat.2016.07.019
24.
ASTM, E
,
2002
, “
140. Standard Hardeness Convertion Tables for Metals
,” American Society for Testing and Materials.
25.
Canadian Standards Association
,
2011
, CSA Z662-2011 Oil and Gas Pipeline Systems.
26.
Al-Showaiter
,
A.
,
Taheri
,
F.
, and
Kenny
,
S.
,
2011
, “
Effect of Misalignment and Weld Induced Residual Stresses on the Local Buckling Response of Pipelines
,”
ASME J. Press. Vessel Technol.
,
133
(
4
), p.
041701
. 10.1115/1.4002858
27.
Ugural
,
A. C.
, and
Fenster
,
S. K.
,
2011
,
Advanced Mechanics of Materials and Applied Elasticity
,
Pearson Education
,
London, UK
.
28.
Transmission, Gas
,
1990
, Distribution Piping System, ASME B 31.
29.
Lincoln
,
J.
,
2000
,
The Procedure Handbook of Arc Welding
,
The Lincoln Electric Company
,
Cleveland, OH
.
30.
Cyr
,
E.
,
Asgari
,
H.
,
Shamsdini
,
S.
,
Purdy
,
M.
,
Hosseinkhani
,
K.
, and
Mohammadi
,
M.
,
2018
, “
Fracture Behaviour of Additively Manufactured MS1-H13 Hybrid Hard Steels
,”
Mater. Lett.
,
212
(
1
), pp.
174
177
. 10.1016/j.matlet.2017.10.097
31.
Wang
,
J.
,
Ma
,
N.
, and
Murakawa
,
H.
,
2015
, “
An Efficient FE Computation for Predicting Welding Induced Buckling in Production of Ship Panel Structure
,”
Mar. Struct.
,
41
(
1
), pp.
20
52
. 10.1016/j.marstruc.2014.12.007
32.
Khedmati
,
M. R.
,
Zareei
,
M. R.
, and
Rigo
,
P.
,
2009
, “
Sensitivity Analysis on the Elastic Buckling and Ultimate Strength of Continuous Stiffened Aluminium Plates Under Combined In-Plane Compression and Lateral Pressure
,”
Thin-Walled Struct.
,
47
(
11
), pp.
1232
1245
. 10.1016/j.tws.2009.04.010
33.
Khedmati
,
M. R.
,
Bayatfar
,
A.
, and
Rigo
,
P.
,
2010
, “
Post-Buckling Behaviour and Strength of Multi-Stiffened Aluminium Panels Under Combined Axial Compression and Lateral Pressure
,”
Mar. Struct.
,
23
(
1
), pp.
39
66
. 10.1016/j.marstruc.2009.10.003
34.
Deng
,
D.
,
Liang
,
W.
, and
Murakawa
,
H.
,
2007
, “
Determination of Welding Deformation in Fillet-Welded Joint by Means of Numerical Simulation and Comparison With Experimental Measurements
,”
J. Mater. Process. Technol.
,
183
(
2–3
), pp.
219
225
. 10.1016/j.jmatprotec.2006.10.013
35.
Obeid
,
O.
,
Alfano
,
G.
,
Bahai
,
H.
, and
Jouhara
,
H.
,
2018
, “
Numerical Simulation of Thermal and Residual Stress Fields Induced by Lined Pipe Welding
,”
Ther. Sci. Eng. Prog.
,
5
(
1
), pp.
1
14
. 10.1016/j.tsep.2017.10.005
36.
Fu
,
G.
,
Lourenço
,
M. I.
,
Duan
,
M.
, and
Estefen
,
S. F.
,
2016
, “
Influence of the Welding Sequence on Residual Stress and Distortion of Fillet Welded Structures
,”
Mar. Struct.
,
46
(
1
), pp.
30
55
. 10.1016/j.marstruc.2015.12.001
37.
Brickstad
,
B.
, and
Josefson
,
B.
,
1998
, “
A Parametric Study of Residual Stresses in Multi-Pass Butt-Welded Stainless Steel Pipes
,”
Int. J. Press. Vessels Pip.
,
75
(
1
), pp.
11
25
. 10.1016/S0308-0161(97)00117-8
38.
ABAQUS, 2016, version 6.14
,
Online Documentation Help, Theory Manual, Dassault Systems
.
39.
EOS
,
2011
,
MaragingSteel MS1 Data Sheet
,
EOS GmbH
,
Seattle, WA
.
40.
Cyr
,
E.
,
Lloyd
,
A.
, and
Mohammadi
,
M.
,
2018
, “
Tension-Compression Asymmetry of Additively Manufactured Maraging Steel
,”
J. Manuf. Processes
,
35
(
1
), pp.
289
294
. 10.1016/j.jmapro.2018.08.015
41.
Ebrahimi
,
A.
,
Kenny
,
S.
, and
Hussein
,
A.
,
2018
, “
Finite Element Investigation on the Tensile Armour Wire Response of Flexible Pipe for Axisymmetric Loading Conditions Using an Implicit Solver
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
4
), p.
041402
. 10.1115/1.4039132
42.
Crisfield
,
M. A.
,
Remmers
,
J. J.
, and
Verhoosel
,
C. V.
,
2012
,
Nonlinear Finite Element Analysis of Solids and Structures
,
John Wiley & Sons
,
Hoboken, NJ
.
43.
Lee
,
C.-H.
,
Baek
,
J.-H.
, and
Chang
,
K.-H.
,
2012
, “
Bending Capacity of Girth-Welded Circular Steel Tubes
,”
J. Constr. Steel Res.
,
75
, pp.
142
151
. 10.1016/j.jcsr.2012.03.019
44.
Ebrahimi
,
A.
,
Kenny
,
S.
, and
Hussein
,
A.
,
2016
, “
Radial Buckling of Tensile Armor Wires in Subsea Flexible Pipe—Numerical Assessment of Key Factors
,”
ASME J. Offshore Mech. Arct. Eng.
,
138
(
3
), p.
031701
. 10.1115/1.4032894
45.
Ebrahimi
,
A.
,
Kenny
,
S.
, and
Hussein
,
A.
,
2015
, “
Finite-Element Simulation of Flexible Pipe Mechanical Response: Challenges and Solutions
,”
J. Pipeline Eng.
,
14
(
4
), pp.
275
287
.
46.
Deng
,
D.
,
Kiyoshima
,
S.
,
Ogawa
,
K.
,
Yanagida
,
N.
, and
Saito
,
K.
,
2011
, “
Predicting Welding Residual Stresses in a Dissimilar Metal Girth Welded Pipe Using 3D Finite Element Model With a Simplified Heat Source
,”
Nucl. Eng. Des.
,
241
(
1
), pp.
46
54
. 10.1016/j.nucengdes.2010.11.010
47.
Eisazadeh
,
H.
,
Bunn
,
J. R.
, and
Aidun
,
D. K.
,
2017
, “
Numerical and Neutron Diffraction Measurement of Residual Stress Distribution in Dissimilar Weld
,”
Weld. J.
,
96
(
1
), pp.
46
54
.
48.
Farabi
,
N.
,
Chen
,
D.
, and
Zhou
,
Y.
,
2011
, “
Microstructure and Mechanical Properties of Laser Welded Dissimilar DP600/DP980 Dual-Phase Steel Joints
,”
J. Alloys Compd.
,
509
(
3
), pp.
982
989
. 10.1016/j.jallcom.2010.08.158
49.
Lee
,
C.-H.
, and
Chang
,
K.-H.
,
2013
, “
Failure Pressure of a Pressurized Girth-Welded Super Duplex Stainless Steel Pipe in Reverse Osmosis Desalination Plants
,”
Energy
,
61
(
1
), pp.
565
574
. 10.1016/j.energy.2013.08.056
You do not currently have access to this content.