The prediction of extreme loads for the offshore floating wind turbine is analyzed based on the inverse reliability technique. The inverse reliability approach is in general used to establish the design levels associated with the specified probability of failure. The present study is performed using the environmental contour (EC) method to estimate the long-term joint probability distribution of extreme loads for different types of offshore floating wind turbines. The analysis is carried out in order to predict the out-of-plane bending moment (OoPBM) loads at the blade root and tower base moment (TBM) loads for a 5 MW offshore floating wind turbine of different floater configuration. The spar-type and semisubmersible type offshore floating wind turbines are considered for the analysis. The FAST code is used to simulate the wind conditions for various return periods and the design loads of various floating wind turbine configurations. The extreme and operation situation of the spar-type and semisubmersible type offshore floating wind turbine are analyzed using one-dimensional (1D) and two-dimensional (2D)-EC methods for different return periods. The study is useful to predict long-term design loads for offshore wind turbines without requiring excessive computational effort.

References

1.
Winterstein
,
S. R.
,
Ude
,
T. C.
,
Cornell
,
C. A.
,
Bjerager
,
P.
, and
Haver
,
S.
,
1993
, “
Environmental Contours for Extreme Response: Inverse FORM With Omission Factors
,”
International Conference on Structural Safety and Reliability
, Aug. 9–13, Innsbruck, Austria, pp.
1
8
.
2.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.
3.
Veers
,
P. S.
, and
Winterstein
,
S. R.
,
1997
, “
Application of Measured Loads to Wind Turbine Fatigue and Reliability Analysis
,”
ASME Wind Energy Symposium
, Jan. 6–9, AIAA, Reno, NV, pp.
160
169
.
4.
Larsen
,
D. C.
,
Ronold
,
K. O.
,
Jorgensen
,
H. E.
,
Argyriadis
,
K.
, and
de Boer
,
J.
,
1999
, “
Ultimate Loading of Wind Turbines
,” Risø National Laboratory, Røskilde, Denmark, Report No. Risø-R-1111.
5.
Ronold
,
K. O.
, and
Larsen
,
G. C.
,
2000
, “
Reliability-Based Design of Wind-Turbine Rotor Blades Against Failure in Ultimate Loading
,”
Eng. Struct.
,
22
(
6
), pp.
565
574
.
6.
Madsen
,
P. H.
,
Pierce
,
K.
, and
Buhl
,
M.
,
1999
, “
Predicting Ultimate Loads for Wind Turbine Design
,”
ASME Wind Energy Symposium
, Jan. 11–14, AIAA, Reno, NV, pp.
355
364
.
7.
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2005
, “
Assessment of Partial Safety Factors for the Longitudinal Strength of Tankers
,”
Maritime Transportation and Exploitation of Ocean and Coastal Resources
,
Guedes Soares
,
C.
,
Y.
Garbatov
, and
N.
Fonseca
, eds.,
Taylor & Francis Group
,
London
, pp.
1601
1609
.
8.
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2009
, “
Reliability Analysis of a Tanker Subjected to Combined Sea-States
,”
Probab. Eng. Mech.
,
24
(
4
), pp.
493
503
.
9.
Guedes Soares
,
C.
,
Garbatov
,
Y.
, and
Teixeira
,
A. P.
,
2010
, “
Methods of Structural Reliability Applied to Design and Maintenance Planning of Ship Hulls and Floating Platforms
,”
Safety and Reliability of Industrial Products, Systems and Structures
,
Guedes Soares
,
C.
, ed.,
Taylor & Francis Group
,
London
, pp.
191
206
.
10.
Bagbanci
,
H.
,
Karmakar
,
D.
, and
Guedes Soares
,
C.
,
2012
, “
Review of Offshore Floating Wind Turbine Concepts
,”
Maritime Engineering and Technology
,
Guedes Soares
,
C.
,
Y.
Garbatov
,
S.
Sutulo
, and
T. A.
Santos
, eds.,
Taylor & Francis Group
,
London
, pp.
553
562
.
11.
Guedes Soares
,
C.
,
Bhattachrjee
,
J.
, and
Karmakar
,
D.
,
2014
, “
Overview and Prospects for Offshore Wave and Wind Energy
,”
Brodogradnja
,
65
(
2
), pp.
91
113
.
12.
Fitzwater
,
L. M.
, and
Winterstein
,
S. R.
,
2001
, “
Predicting Design Wind Turbine Loads From Limited Data: Comparing Random Process and Random Peak Models
,”
ASME J. Sol. Energy Eng.
,
123
(
4
), pp.
364
371
.
13.
Manuel
,
L.
,
Veers
,
P. S.
, and
Winterstein
,
S. R.
,
2001
, “
Parametric Models for Estimating Wind Turbine Fatigue Loads for Design
,”
ASME J. Sol. Energy Eng.
,
123
(
4
), pp.
346
355
.
14.
Fitzwater
,
L. M.
,
Winterstein
,
S. R.
, and
Cornell
,
C. A.
,
2002
, “
Predicting the Long Term Distribution of Extreme Loads From Limited Duration Data: Comparing Full Integration and Approximate Methods
,”
ASME J. Sol. Energy Eng.
,
124
(
4
), pp.
378
386
.
15.
Moriarty
,
P. J.
,
Holley
,
W. E.
, and
Butterfield
,
S.
,
2002
, “
Effect of Turbulence Variation on Extreme Loads Prediction for Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
124
(
4
), pp.
387
395
.
16.
Fitzwater
,
L. M.
,
Cornell
,
C. A.
, and
Veers
,
P. S.
,
2003
, “
Using Environmental Contours to Predict Extreme Events on Wind Turbines
,”
ASME Wind Energy Symposium
, Jan. 6–9, Reno, NV, pp.
244
258
.
17.
Saranyasoontorn
,
K.
, and
Manuel
,
L.
,
2004
, “
Efficient Models for Wind Turbine Extreme Loads Using Inverse Reliability
,”
J. Wind Eng. Ind. Aerodyn.
,
92
(
10
), pp.
789
804
.
18.
Saranyasoontorn
,
K.
, and
Manuel
,
L.
,
2006
, “
Design Loads for Wind Turbines Using Environmental Contour Method
,”
ASME J. Sol. Energy Eng.
,
128
(
4
), pp.
554
561
.
19.
Agarwal
,
P.
, and
Manuel
,
L.
,
2009
, “
Simulation of Offshore Wind Turbine Response for Long-Term Extreme Load Prediction
,”
Eng. Struct.
,
31
(
10
), pp.
2236
2246
.
20.
Saranyasoontorn
,
K.
, and
Manuel
,
L.
,
2005
, “
On Assessing the Accuracy of Offshore Wind Turbine Reliability Based Design Loads From Environmental Contour Method
,”
J. Offshore Polar Eng.
,
15
(
2
), pp.
1
9
.
21.
Christensen
,
C. F.
, and
Nielsen
,
T. A.
,
2000
, “
Return Period for Environmental Loads-Combination of Wind and Wave Loads for Offshore Wind Turbines
,” EFP 99.
22.
Jonkman
,
J. M.
,
2010
, “
Definition of the Floating System for Phase IV of OC3
,” National Renewable Energy Laboratory, Technical Report No. NREL/TP-500-47535.
23.
Roddier
,
D.
,
Cermelli
,
C.
,
Aubault
,
A.
, and
Weinstein
,
A.
,
2010
, “
WindFloat: A Floating Foundation for Offshore Wind Turbines
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033104
.
24.
Bagbanci
,
H.
,
Karmakar
,
D.
, and
Guedes Soares
,
C.
,
2015
, “
Comparison of Spar-Type and Semi-Submersible Type Floaters Concepts of Offshore Wind Turbines Using Long-Term Analysis
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
6
), p.
061601
.
25.
Jonkman
,
J. M.
,
2009
, “
Dynamics of Offshore Floating Wind Turbines-Model Development and Verification
,”
Wind Energy
,
12
(
5
), pp.
459
492
.
26.
Karmakar
,
D.
, and
Guedes Soares
,
C.
,
2014
, “
Reliability Based Design Loads of an Offshore Semi-Submersible Floating Wind Turbine
,”
Developments in Maritime Transportation and Exploitation of Sea Resources
,
Guedes Soares
,
C.
and
F. L.
Pena
, eds.,
Taylor & Francis Group
,
London
, pp.
919
926
.
You do not currently have access to this content.