In this note the relation between two simple approaches to estimate the extreme ship response used when no, or a limited, amount of data are available is discussed. The first one employs the long term distribution of the local maxima of ship response while the second one uses the expected number of upcrossings of a level by the response. It is mathematically demonstrated that the two approaches are equivalent. However, the upcrossing method is more straightforward and convenient for practical applications, particularly for non-Gaussian responses. The full-scale measurements of a 2800 TEU container ship during the first six months of 2008 are used in the comparisons.

References

1.
Coles
,
S.
,
2001
,
An Introduction to Statistical Modeling of Extreme Values
,
Springer
,
New York.
2.
Storhaug
,
G.
,
Moe
,
E.
, and
Piedras Lopes
,
T. A.
,
2007
, “
Whipping Measurements Onboard a Midsize Container Vessel Operating in the North Atlantic
,”
Marintec China Proceedings
(RINA, CMP, and SNAME).
3.
Mao
,
W.
, and
Rychlik
,
I.
,
2012
, “
Extreme Estimation of Ship Response
,”
J. Ship Res.
,
56
(
1
), pp.
23
34
.10.5957/JOSR.56.1.100032
4.
DNV (Det Norske Veritas)
,
2007
, “
SESAM PostResp (Processor for Statistical Response Calculations) User Manual
,” V6.2-04, build date 5 December 2007, Oslo, Norway.
5.
Naess
,
A.
,
Gaidai
,
O.
, and
Haver
,
S.
,
2007
, “
Efficient Estimation of Extreme Response of Drag Dominated Offshore Structures by Monte Carlo Simulation
,”
Ocean Eng.
,
34
(
16
), pp.
2188
2197
.10.1016/j.oceaneng.2007.03.006
6.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
, pp.
282
332
. Available at http://www.alcatel-lucent.com/bstj/vol23-1944/articles/bstj23-3-282.pdf
7.
Rice
,
S. O.
,
1945
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
24
, pp.
46
156
. Available at http://www.alcatel-lucent.com/bstj/vol24-1945/articles/bstj24-1-46.pdf
8.
Cramer
,
H.
, and
Leadbetter
,
M.
,
1967
,
Stationary and Related Stochastic Process: Sample Function Properties and Their Applications
,
Wiley
,
New York
, (reprint 2004, Dover, New York).
9.
Bendat
,
J. S.
,
1964
, “
Probability Functions for Random Responses: Predictions of Peaks, Fatigue Damage and Catastrophic Failures
,” NASA Report No. CR-33, National Aeronautics and Space Administration (NASA), Washington, DC.
10.
Winterstein
,
S. R.
,
Ude
,
T. C.
, and
Marthinsen
,
T.
,
1994
, “
Volterra Models of Ocean Structures: Extreme and Fatigue Reliability
,”
J. Eng. Mech.
,
120
(
6
), pp.
1369
1385
.10.1061/(ASCE)0733-9399(1994)120:6(1369)
11.
Baxevani
,
A.
,
Borgel
,
C.
, and
Rychlik
,
I.
,
2008
, “
Spatial Models for Variability of Significant Wave Height in World Oceans
,”
Int. J. Offshore Polar Eng.
,
18
, pp.
1
7
. Available at http://www.isope.org/publications/journals/ijope-18-1/abst-18-1-p001-JC-428-Baxevani.pdf
12.
Rychlik
,
I.
,
Rydén
,
J.
, and
Andersson
,
C.
,
2011
, “
Estimation of Return Values for Significant Wave Height From Satellite Data
,”
Extremes
,
14
, pp.
167
186
.10.1007/s10687-010-0117-3
13.
Moe
,
G.
, and
Niedzwecki
,
J. M.
,
2005
, “
Frequency of Maxima of Non-Narrow Banded Stochastic Processes
,”
Appl. Ocean Res.
,
27
, pp.
265
272
.10.1016/j.apor.2005.12.004
You do not currently have access to this content.