Abstract

Predicting the power distribution within nuclear fuel is essential for predicting reactor fuel performance, since power distributions can impact pellet temperature distributions and fission product transport and migration. Analytical expressions for radial power distribution in fuel pellets were sought using lattice physics calculations to generate data and a machine learning technique to find representative expressions. Analytical approximations can be useful in nuclear fuel performance codes, such as element simulation and stresses (ELESTRES)/ element simulation code in a loss of coolant accident (ELOCA) for providing very rapid predictions of power distributions with reduced computational effort and memory requirements, relative to using an embedded or coupled neutron transport/burnup reactor physics code. Radial power distributions were calculated a priori using lattice physics codes to model mixed oxide (MOX) 37-element fuel bundles in pressure tube heavy water reactors. Such advanced fuels are of interest for future fuel cycles. Several datasets were generated with different amounts of PuO2 and variable neutron energy spectrum. Results of preliminary studies with the least absolute shrinkage and selection operator (LASSO) regression machine learning method have obtained analytical fitting functions with a mean maximum relative error (MRE) of 0.056 and a maximum MRE of 0.152 on the test set. However, using LASSO to estimate the coefficients of a physically motivated modified Bessel plus an exponential function, results in a lower MRE (mean MRE 0.041 and maximum MRE 0.11) on the same test set. Further potential improvements in both the curve fit and the machine learning methods are discussed.

References

1.
Wong
,
H. H.
,
Alp
,
E.
,
Clendening
,
W. R.
,
Tayal
,
M.
, and
Jones
,
L. R.
,
1982
, “
ELESTRES: A Finite Element Fuel Model for Normal Operating Conditions
,”
Nucl. Technol.
,
57
(
2
), pp.
203
212
.10.13182/NT82-A26282
2.
Hallgrimson
,
K.
,
Tayal
,
M.
,
Wong
,
B.
, and
Aboud
,
R.
,
1992
, “
Recent Validations of the ELESTRES Code
,”
Proceedings of the Third International Conference on CANDU Fuel
, Canadian Nuclear Society, Chalk River, ON, Oct. 4–8, pp.
553
565
.
3.
Williams
,
A. F.
,
2005
, “
The ELOCA Fuel Modelling Code: Past, Present and Future
,”
Proceedings of Ninth International Conference on CANDU Fuel
, Belleville, ON, Sept. 18–21, Paper No. B4007.https://inis.iaea.org/search/search.aspx?orig_q=RN:38110012
4.
Altiparmakov
,
D. V.
,
2008
, “
New Capabilities of the Lattice Code WIMS-AECL
,”
Proceedings of PHYSOR, Interlaken, Switzerland
, Sept. 14–19, 8p.
5.
Altiparmakov
,
D. V.
,
2010
, “
ENDF/B-VII.0 Versus ENDF/B-VI.8 in CANDU Calculations
,”
Proceedings of PHYSOR
, Pittsburgh, PA, May 9–14, 10p.
6.
Leppanen
,
J.
, and
DeHart
,
M.
,
2009
, “
HTGR Reactor Physics and Burnup Calculations Using the SERPENT Monte Carlo Code
,”
ANS Trans.
,
101,
pp.
782
784
.https://www.vtt.fi/inf/julkaisut/muut/2009/ANS.pdf
7.
Younan
,
S.
, and
Novog
,
D.
,
2020
, “
Extension and Preliminary Validation of the POLARIS Lattice Physics Code for CANDU Analysis
,”
Nucl. Eng. Des.
,
361
, p.
110540
.10.1016/j.nucengdes.2020.110540
8.
Botazzoli
,
P.
,
Luzzi
,
L.
,
Brémier
,
S.
,
Schubert
,
A.
,
Uffelen
,
P. V.
,
Walker
,
C. T.
,
Haeck
,
W.
, and
Goll
,
W.
,
2011
, “
Extension and Validation of the TRANSURANUS Burnup Model for Helium Production in High Burnup LWR Fuels
,”
J. Nucl. Mater.
,.
419
(
1–3
), pp.
329
338
.December. November. 2011.10.1016/j.jnucmat.2011.05.040
9.
Lassmann
,
K.
,
Walker
,
C. T.
, and
van de Laar
,
J.
,
1998
, “
Extension of TRANSURANU Burnup Model to Heavy Water Reactor Conditions
,”
J. Nucl. Mater.
,
255
(
2–3
), pp.
222
233
.10.1016/S0022-3115(98)00019-1
10.
Woo
,
S. M.
,
Kim
,
H.
, and
Chirayath
,
S. S.
,
2020
, “
Influence of the Spatial Pu Variation for Evaluating the Pu Content in Spent Nuclear Fuel Using Support Vector Regression
,”
Ann. Nucl. Energy
,
135
, p.
106997
.10.1016/j.anucene.2019.106997
11.
Bae
,
J. W.
,
Rykhlevskii
,
A.
,
Chee
,
G.
, and
Huff
,
K. D.
,
2020
, “
Deep Learning Approach to Nuclear Fuel Transmutation in a Fuel Cycle Simulator
,”
Ann. Nucl. Energy
,
139
, p.
107230
.10.1016/j.anucene.2019.107230
12.
Baptiste
,
L.
,
Mouginot
,
B.
,
Thiolliere
,
N.
,
Doligez
,
X.
,
Bidaud
,
A.
,
Courtin
,
F.
,
Ernoult
,
M.
, and
David
,
S.
,
2015
, “
A Neural Network Approach for Burn-Up Calculation and Its Application to the Dynamic Fuel Cycle Code CLASS
,”
Ann. Nucl. Energy
,
81
, pp.
125
133
.10.1016/j.anucene.2015.03.035
13.
Tomatis
,
D.
,
Zmijarevic
,
I.
, and
Cattaneo
,
P.
,
2018
, “
A Simple Multiphysics Coupling for High-Fidelity Neutronic Modelling in Fuel Performance Codes
,”
Proceedings of PHYSOR, Cancun, Mexico
, Apr. 22–26, pp.
2818
2830
.
14.
Foad
,
B.
, and
Refeat
,
R.
,
2018
, “
Estimation of Resonance Self-Shielding Effect in PWR Pin Cell for Different Fuel Types
,”
Ann. Nucl. Energy
,
120
, pp.
805
813
.10.1016/j.anucene.2018.06.045
15.
Lamarsh
,
J. R.
,
2002
, “
Introduction to Nuclear Reactor Theory
,” American Nuclear Society, La Grange Park, IL, pp.
370
378
.
16.
Cornet
,
S. M.
,
McCarthy
,
K.
, and
Chauvin
,
N.
,
2013
, “
OECD/NEA Ongoing Activities Related to the Nuclear Fuel Cycle
,”
Proceedings of Global
, Salt Lake City, UT, Sept. 29–Oct.3, pp.
961
964
.
17.
Csontos
,
A.
, and
Smith
,
F.
,
2019
,
Safety and Economic Benefits of Accident Tolerant Fuels
,
American Nuclear Society Nuclear News,
La Grange Park, IL, pp.
21
25
.
18.
Ramprasad
,
R.
,
Batra
,
R.
,
Pilania
,
G.
,
Mannodi-Kanakkithodi
,
A.
, and
Kim
,
C.
,
2017
, “
Machine Learning in Materials Informatics: Recent Applications and Prospects
,”
Comput. Mater.
,
3
, p.
54
.10.1038/s41524-017-0056-5
19.
Ghiringhelli
,
L. M.
,
Vybiral
,
J.
,
Ahmetcik
,
E.
,
Ouyang
,
R.
,
Levchenko
,
S. V.
,
Draxl
,
C.
, and
Scheffler
,
M.
,
2017
, “
Learning Physical Descriptors for Materials Science by Compressed Sensing
,”
New J. Phys.
,.
19
(
2
), p.
023017
.10.1088/1367-2630/aa57bf
20.
IAEA
,
2002
, “
Heavy Water Reactors: Status and Projected Development
,” IAEA International Atomic Energy Agency, Vienna, Report No. 407.
21.
Griffiths
,
J.
,
1983
,
Reactor Physics and Economic Aspects of the CANDU Reactor System
,
Atomic Energy of Canada Limited
, Chalk River, ON, Canada, Report No. AECL-7615.
22.
Colton
,
A. V.
, and
Bromley
,
B. P.
,
2016
, “
Full-Core Evaluation of Uranium-Based Fuels Augmented With Small Amounts of Thorium in Pressure Tube Heavy Water Reactors
,”
Nucl. Technol.
,
196
(
1
), pp.
1
12
.10.13182/NT16-70
23.
Colton
,
A. V.
,
Dugal
,
C.
,
Bromley
,
B. P.
, and
Yan
,
H.
,
2017
, “
Code-to-Code Comparisons of Lattice Physics Calculations for Thorium-Augmented and Thorium-Based Fuels in Pressure Tube Heavy Water Reactors
,”
Ann. Nucl. Energy
,
103
, pp.
194
203
.10.1016/j.anucene.2017.01.023
24.
Nakahara
,
Y.
,
Suyama
,
K.
,
Inagawa
,
J.
,
Nagaishi
,
R.
,
Kurosawa
,
S.
,
Kohno
,
N.
,
Onuki
,
M.
, and
Mochizuki
,
H.
,
2002
, “
Nuclide Composition Benchmark Data Set for Verifying Burnup Codes on Spent Light Water Reactor Fuels
,”
Nucl. Technol.
,
137
(
2
), pp.
111
126
.10.13182/NT02-2
25.
Lamarsh
,
J. R.
,
1983
,
Introduction to Nuclear Engineering
,
2
nd ed.,
Addison-Wesley Publishing Company
,
Reading, MA
, pp.
306
312
.
26.
Pencer
,
J.
,
Colton
,
A.
,
Wang
,
X.
,
Gaudet
,
M.
,
Hamilton
,
H.
, and
Yetisir
,
M.
,
2013
, “
Evolution of the Core Physics Concept for the Canadian Supercritical Water Reactor
,”
International Nuclear Fuel Cycle Conference, GLOBAL 2013: Nuclear Energy at a Crossroads
, Vol.
2
, Salt Lake City, UT, pp.
1024
1030
.https://inis.iaea.org/search/search.aspx?orig_q=RN:45085377
27.
IAEA,
2012
,
Status of Fast Reactor Research and Technology Development. IAEA-TECDOC-1691
,
International Atomic Energy Agency
,
Vienna. Austria
.
28.
IAEA
,
1976
,
Directory of Nuclear Reactors
, Vol.
X
,
International Atomic Energy Agency
,
Vienna. Austria
.
29.
Bialon
,
A. F.
,
Hammerschmidt
,
T.
, and
Drautz
,
R.
,
2016
, “
Three-Parameter Crystal Structure Prediction for sp-d-Valent Compounds
,”
Chem. Mater.
,
28
(
8
), pp.
2550
2556
.10.1021/acs.chemmater.5b04299
30.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2016
,
The Elements of Statistical Learning: Data Mining, Inference and Prediction
,
Springer
,
New York
.
31.
Sim
,
K. S.
,
Park
,
K. S.
,
Byun
,
T. S.
, and
Suk
,
H. C.
,
1995
, “
Modification of ELESTRES Code With New Database of Flux Depression Across the Pellet Radius
,” Korea Atomic Energy Research Institute, Daejeon, South Korea, Report No. KAERI-TR-485/94.
32.
Notley
,
M. J. F.
,
1979
, “
ELESIM: A Computer Code for Predicting the Performance of Nuclear Fuel Elements
,”
Nucl. Technol.
,
44
(
3
), pp.
445
450
.10.13182/NT79-A32279
33.
Suk
,
H. C.
,
Hwang
,
W.
,
Kim
,
B. G.
,
Kim
,
K. S.
, and
Heo
,
Y. H.
,
1993
, “
Improvement of ELESIM CANDU Fuel Performance Analysis Code
,”
Proceedings of a Technical Committee Meeting, International Atomic Energy Agency
, Pembroke, ON, Canada, April 28–May 1, Report No. IAEA-TECDOC-697.
34.
Arimescu
,
V. I.
, and
Richmond
,
W. R.
,
1992
,
Modeling CANDU-Type Fuel Behaviour During Extended Burnup Irradiations Using a Revised Version of the ELESIM Code
,
Atomic Energy of Canada Limited
, Chalk River, ON, Canada, Report No. AECL-10622.
35.
R Development Core Team,
2008
,
R: A Language and Environment for Statistical Computing
,
R Foundation for Statistical Computing
,
Vienna, Austria
.
36.
Elzhov
,
T. V.
,
Mullen
,
K. M.
,
Spiess
,
A. N.
, and
Bolker
,
B.
,
2016
, “
Minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds
,”
R Package
Version 1.2-1.https://CRAN.R-project.org/package=minpack.lm
37.
James
,
G.
,
Witten
,
D.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2013
,
An Introduction to Statistical Learning,
Vol.
112
,
Springer
,
New York
, p.
18
.
38.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis Off Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.10.1214/ss/1177012420
39.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
40.
O'Hagan
,
A.
,
2006
, “
Bayesian Analysis of Computer Code Outputs: A Tutorial
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp.
1290
1300
.10.1016/j.ress.2005.11.025
You do not currently have access to this content.