Abstract

Nodal integral methods (NIM) are a class of efficient coarse mesh methods that use transverse averaging to reduce the governing partial differential equation(s) (PDE) into a set of ordinary differential equations (ODE). These ODEs or their approximations are analytically solved. These analytical solutions are used to then develop the numerical scheme. Transverse averaging is an essential step in the development of NIM, and hence the standard application of this approach gets restricted to domains that have boundaries parallel to one of the coordinate axes (in 2D) or coordinate planes (in 3D). The hybrid nodal-integral/finite element method (NI-FEM) reported here has been developed to extend the application of NIM to arbitrary domains. NI-FEM is based on the idea that the interior region and the regions with boundaries parallel to the coordinate axes (2D) or coordinate planes (3D) can be solved using NIM, and the rest of the domain can be discretized and solved using FEM. The crux of the hybrid NI-FEM is in developing interfacial conditions at the common interfaces between the NIM regions and FEM regions. Since the discrete variables in the two numerical approaches are different, this requires special treatment of the discrete quantities on the interface between the two different types of discretized elements. We here report the development of hybrid NI-FEM for the time-dependent convection-diffusion equation (CDE) in arbitrary domains. The resulting hybrid numerical scheme is implemented in a parallel framework in fortran and solved using portable, extensible toolkit for scientific computation (PETSc). The preliminary approach to domain decomposition is also discussed. Numerical solutions are compared with exact solutions, and the scheme is shown to be second-order accurate in both space and time. The order of approximations used for the development of the scheme is also shown to be second order. The hybrid method is more efficient compared to standalone conventional numerical schemes like FEM.

References

1.
Hata
,
K.
,
Fukuda
,
K.
, and
Mizuuchi
,
T.
,
2019
, “
Laminar Natural Convection Heat Transfer From Vertical 7 × 7 Rod Bundles in Liquid Sodium
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
2
), p. 021002.10.1115/1.4042356
2.
Kiss
,
A.
,
Hegyesi
,
B.
,
Ujváry
,
P. R.
,
Ványi
,
A. S.
, and
Csom
,
G.
,
2020
, “
About the Thermal Hydraulic Analysis Part of a Coupled Study on a Thorium-Fueled SCWR Concept
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
6
(
3
), p. 031108.10.1115/1.4046904
3.
Zhou
,
X.
,
Guo
,
J.
, and
Li
,
F.
,
2016
, “
General Nodal Expansion Method for Multi-Dimensional Steady and Transient Convection–Diffusion Equation
,”
Ann. Nucl. Energy
,
88
, pp.
118
125
.10.1016/j.anucene.2015.10.023
4.
Rizwan
,
U.
,
1997
, “
A Second-Order Space and Time Nodal Method for the One-Dimensional Convection-Diffusion Equation
,”
Comput. Fluids
,
26
(
3
), pp.
233
247
.10.1016/S0045-7930(96)00039-4
5.
Wang
,
F.
, and
Uddin
,
R.
,
2003
, “
A Modified Nodal Scheme for the Time-Dependent, Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
187
(
1
), pp.
168
196
.10.1016/S0021-9991(03)00093-7
6.
Wescott
,
B. L.
, and
Uddin
,
R.
,
2001
, “
An Efficient Formulation of the Modified Nodal Integral Method and Application to the Two-Dimensional Burgers' Equation
,”
Nucl. Sci. Eng.
,
139
(
3
), pp.
293
305
.10.13182/NSE01-A2239
7.
Toreja
,
A. J.
, and
Uddin
,
R.
,
2003
, “
Hybrid Numerical Methods for Convection–Diffusion Problems in Arbitrary Geometries
,”
Comput. Fluids
,
32
(
6
), pp.
835
872
.10.1016/S0045-7930(02)00031-2
8.
Wang
,
P.
, and
Uddin
,
R.
,
2018
, “
A Modified, Hybrid Nodal-Integral/Finite-Element Method for 3D Convection-Diffusion Problems in Arbitrary Geometries
,”
Int. J. Heat Mass Transfer
,
122
, pp.
99
116
.10.1016/j.ijheatmasstransfer.2018.01.087
9.
Michael
,
E.
,
Dorning
,
J.
, and
Uddin
,
R.
,
2001
, “
Studies on Nodal Integral Methods for the Convection-Diffusion Equation
,”
Nucl. Sci. Eng.
,
137
(
3
), pp.
380
399
.10.13182/NSE137-380
10.
Azmy
,
Y.
,
1983
, “
A Nodal Integral Approach to the Numerical Solution of Partial Differential Equations
,”
Proc. Topical. Mtg. on Advances in Reactor Computations
,
Salt Lake City
.
11.
Chaple
,
R. P. B.
,
2006
,
Numerical Stabilization of Convection-Diffusion-Reaction Problems
,
Delft University of Technology
, Delft, The Netherlands.
12.
Donea
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
, John Wiley & Sons,
Hoboken, NJ
.
13.
Reddy
,
J. N.
, and
Gartling
,
D. K.
,
2010
,
The Finite Element Method in Heat Transfer and Fluid Dynamics
,
Boca Raton, FL.
14.
Tezduyar
,
T.
, and
Sathe
,
S.
,
2003
, “
Stabilization Parameters in SUPG and PSPG Formulations
,”
J. Comput. Appl. Mech.
,
4
(
1
), pp.
71
88
.https://www.tafsm.org/PUB_PRE/jALL/j106-JCAM-SP.pdf
15.
Balay
,
S.
,
Abhyankar
,
S.
,
Adams
,
M.
,
Brown
,
J.
,
Brune
,
P.
,
Buschelman
,
K.
,
Constantinescu
, E., Dalcin, L., Denchfield, A., Dener, A., Eijkhout, V., Gropp, W., Karpeyev, D., Kaushik, D., Knepley, M., May, D., Curfman McInnes, L., Mills, R., Munson, T., Rupp, K., Sanan, P., Smith, B., Suh, H., Zampini, S., and Zhang, H.
,
2021
, “
PETSc/Tao Users Manual
,”
Argonne National Laboratory
,
Lemont, IL
.
16.
Persson
,
P.-O.
, and
Strang
,
G.
,
2004
, “
A Simple Mesh Generator in MATLAB
,”
SIAM Review
,
46
(
2
), pp.
329
345
.10.1137/S0036144503429121
17.
Marini
,
L.
, and
Quarteroni
,
A.
,
1988
, “
An Iterative Procedure for Domain Decomposition
,”
First International Symposium on Domain Decomposition Methods for Partial Differential Equations: Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations
,
Paris, France
, Vol.
1
,
SIAM
, Jan. 7–9, 1987, p.
129
.
You do not currently have access to this content.