Abstract

A method to monitor the mechanical behavior and identify crack location and growth in a concrete structure element using a distributed fiber optic sensor (FOS) system is demonstrated experimentally by testing concrete specimens in four-point bending. The sensor system consisted of an optical frequency domain reflectometry (OFDR) interrogator unit paired with an all-grating sensing fiber that was bonded to the surface of the concrete test specimen. Strain measurements with high spatial resolution of <10 mm were obtained at various points along a single fiber cable. Large strain values at the crack locations indicated strain concentrations that could be used to assess the crack growth. The distributed sensing system demonstrated the capability to detect localized, early stage cracks, with crack width smaller than 0.1 mm, well before they become observable by visual inspection.

References

1.
Koutsopoulos
,
H. N.
, and
El Sanhouri
,
I.
,
1991
, “
Methods and Algorithms for Automated Analysis of Pavement Images
,” Transportation Research Record 1311, Transportation Research Board, pp.
103
111
.
2.
Slate
,
F. O.
, and
Hover
,
K. C.
,
1984
, “
Microcracking in Concrete
,”
Fracture Mechanics of Concrete: Material Characterization and Testing
(Engineering Application of Fracture Mechanics),
A.
Carpinteri
, and
A. R.
Ingraffea
, eds., Vol.
3
,
Springer
,
Dordrecht, The Netherlands
, pp.
137
159
.
3.
Poston
,
R. W.
,
Kesner
,
K. E.
,
Emmons
,
P. H.
, and
Vaysburd
,
A. M.
,
1998
, “
Performance for Concrete Repair Materials, Phase II Laboratory Results
,” U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, Report No. REMR-CS-57.
4.
Jacobs
,
L. J.
, and
Whitcomb
,
R. W.
,
1997
, “
Laser Generation and Detection of Ultrasound in Concrete
,”
J. Nondestruct. Eval.
,
16
(
2
), pp.
57
65
.10.1007/BF02683878
5.
Ouyang
,
C.
, and
Shah
,
S. P.
,
1991
, “
Geometry-Dependent R-Curve for Quasi-Brittle Materials
,”
J. Am. Ceram. Soc.
,
74
(
11
), pp.
2831
2836
.10.1111/j.1151-2916.1991.tb06851.x
6.
Ohtsu
,
M.
, and
Farahat
,
A. M.
,
1995
, “
Evaluation of Plastic Damage in Concrete by Acoustic Emission
,”
J. Mater. Civ. Eng.
,
7
(
3
), pp.
148
153
.10.1061/(ASCE)0899-1561(1995)7:3(148)
7.
Ohtsu
,
M.
,
1996
, “
The History and Development of Acoustic Emission in Concrete Engineering
,”
Mag. Concrete Res.
,
48
(
177
), pp.
321
330
.10.1680/macr.1996.48.177.321
8.
Duck
,
G.
,
Renaud
,
G.
, and
Measures
,
R.
,
1999
, “
The Mechanical Load Transfer Into a Distributed Optical Fiber Sensor Due to a Linear Strain Gradient: Embedded and Surface Bonded Cases
,”
Smart Mater. Struct.
,
8
(
2
), pp.
175
181
.10.1088/0964-1726/8/2/002
9.
Imai
,
M.
,
Nakano
,
R.
,
Kono
,
T.
,
Ichinomiya
,
T.
,
Miura
,
S.
, and
Mure
,
M.
,
2010
, “
Crack Detection Application for Fiber Reinforced Concrete Using BOCDA-Based Optical Fiber Strain Sensor
,”
J. Struct. Eng.
,
136
(
8
), pp.
1001
1008
.10.1061/(ASCE)ST.1943-541X.0000195
10.
Inaudi
,
D.
,
Cottone
,
I.
, and
Figini
,
A.
,
2013
, “
Monitoring Dams and Levees With Distributed Fiber Optic Sensing
,”
Sixth International Conference on Structural Health Monitoring of Intelligent Infrastructure
, Hong Kong, China, Dec. 9.
11.
Huston
,
D. R.
,
Fuhr
,
P. L.
, and
Ambrose
,
T. P.
,
1993
, “
Dynamic Testing of Concrete With Fiber Optic Sensors
,”
Application of Fiber Optic Sensors in Engineering Mechanics
,
Ansari
,
F.
, eds.,
American Society of Civil Engineers (ASCE)
,
Reston, VA
, pp.
134
143
.
12.
Huston
,
D. R.
,
Fuhr
,
P. L.
,
Ambrose
,
T. P.
, and
Barker
,
D. A.
,
1994
, “
Intelligent Civil Structures—Activities in Vermont
,”
Smart Mater. Struct.
,
3
(
2
), pp.
129
139
.10.1088/0964-1726/3/2/008
13.
Murphy
,
K. A.
,
Miller
,
M. S.
,
Vengsarkar
,
A. M.
, and
Claus
,
R. O.
,
1990
, “
Elliptical-Core Two Mode Optical-Fiber Sensor Implementation Methods
,”
J. Lightwave Technol.
,
8
(
11
), pp.
1688
1696
.10.1109/50.60567
14.
Sirkis
,
J. S.
,
Brennan
,
D. D.
,
Putman
,
M. A.
,
Berkoff
,
T. A.
,
Kersey
,
A. D.
, and
Friebele
,
E. J.
,
1993
, “
In-Line Fiber Etalon for Strain Measurement
,”
J. Opt. Lett.
,
18
(
22
), pp.
1973
1975
.
15.
DTG Technologies
,
2019
, “
FBGS Technologies GMBH
,” Jena, Germany, accessed Oct. 18, 2019, https://fbgs.com/components/all-grating-fibers-agf/
16.
Passy
,
R.
,
Gisin
,
N.
,
von der Weid
,
J. P.
, and
Gilgen
,
H. H.
,
1994
, “
Experimental and Theoretical Investigation of Coherent OFDR With Semiconductor Laser Sources
,”
J. Lightwave Technol.
,
12
(
9
), pp.
1622
1630
.10.1364/OL.18.001973
17.
Akcay
,
C.
,
Parrein
,
P.
, and
Rolland
,
J. P.
,
2002
, “
Estimation of Longitudinal Resolution in Optical Coherence Imaging
,”
Appl. Opt.
,
41
(
25
), pp.
5256
5262
.10.1364/AO.41.005256
18.
Soller
,
B. J.
,
Gifford
,
D. K.
,
Wolfe
,
M. S.
, and
Froggatt
,
M. E.
,
2005
, “
High Resolution Optical Frequency Domain Reflectometry for Characterization of Components and Assemblies
,”
J. Opt. Express
,
13
(
2
), pp.
666
674
.10.1364/OPEX.13.000666
You do not currently have access to this content.