Molten salt reactors (MSRs) are promising advanced nuclear reactors for closure of the fuel cycle. This paper discusses the core design of graphite-moderated MSRs, thanks to a parametric study of the fuel and moderator lattice. The study is conducted at equilibrium of the thorium-uranium fuel cycle for several fuel channel radius and moderator block size combinations. The equilibrium composition for each studied configuration is derived with the help of an in-house MATLAB code, EQL0D, which uses the Serpent 2 Monte Carlo neutronics code for the calculation of reaction rates. The results include excess reactivity at equilibrium, mirroring the breeding gain, and the actinide vector composition for each configuration. Moreover, the occurence of an optimum of the excess reactivity per percent uranium-233 was observed. The investigations showed that it is systematically seen at an interchannel distance equal to the neutron slowing-down length in graphite for each configuration and does not depend on the salt channel radius beyond a certain size, which is given by the thermal fission rate reaching the levels of the fast fission rate. In this way, an exotic energy and spatial distribution of the neutrons are attained. The investigations highlight the potential attractiveness, from a neutronics/fuel cycle point of view, of both large fuel channels and moderators with a shorter neutron slowing-down length.

References

1.
Serp
,
J.
,
Allibert
,
M.
,
Beneš
,
O.
,
Delpech
,
S.
,
Feynberg
,
O.
,
Ghetta
,
V.
,
Heuer
,
D.
,
Holcomb
,
D.
,
Ignatiev
,
V.
,
Kloosterman
,
J. L.
,
Luzzi
,
L.
,
Merle-Lucotte
,
E.
,
Uhlíř
,
J.
,
Yoshioka
,
R.
, and
Zhimin
,
D.
,
2014
, “
The Molten Salt Reactor (MSR) in Generation IV: Overview and Perspectives
,”
Prog. Nucl. Energy
,
77
(
Nov.
), pp. 
308
319
.10.1016/j.pnucene.2014.02.014
2.
Rosenthal
,
M. W.
,
Kasten
,
P. R.
, and
Briggs
,
R. B.
,
1970
, “
Molten Salt Reactors—History, Status, and Potential
,”
Nucl. Appl. Technol.
,
8
(
2
), pp. 
107
117
.
3.
Křepel
,
J.
,
Hombourger
,
B.
,
Fiorina
,
C.
,
Mikityuk
,
K.
,
Rohde
,
U.
,
Kliem
,
S.
, and
Pautz
,
A.
,
2014
, “
Fuel Cycle Advantages and Dynamics Features of Liquid Fueled MSR
,”
Ann. Nucl. Energy
,
64
(
Feb.
), pp. 
380
397
.10.1016/j.anucene.2013.08.007
4.
Robertson
,
R. C.
,
1971
, “
Conceptual Design Study of a Single-Fluid Molten-Salt Breeder Reactor
,” Tech. Rep. ORNL-4541,
Oak Ridge National Laboratory (ORNL)
, Oak Ridge, TN.
5.
Robertson
,
R. C.
,
Smith
,
O. L.
,
Briggs
,
R. B.
, and
Bettis
,
E. S.
,
1968
, “
Two-Fluid Molten-Salt Breeder Reactor Design Study
,” Tech. Rep. ORNL-4528,
Oak Ridge National Laboratory (ORNL)
, Oak Ridge, TN.
6.
Holcomb
,
D. E.
,
2011
, “
Fast Spectrum Molten Salt Reactor Options
,” Tech. Rep. ORNL/TM-2011/105,
Oak Ridge National Laboratory (ORNL)
, Oak Ridge, TN.
7.
Merle-Lucotte
,
E.
,
2011
, “
Launching the Thorium Fuel Cycle with the Molten Salt Fast Reactor
,”
Proceedings of the 2011 International Congress on Advances in Nuclear Power Plants (ICAPP ’11)
,
Nice, France
,
May 2–6
,
Société Générale d'Énergie Nucléaire (SFEN)
,
Paris, France
.
8.
Ignatiev
,
V. V.
,
Feynberg
,
O. S.
,
Zagnitko
,
A. V.
,
Merzlyakov
,
A. V.
,
Surenkov
,
A. I.
,
Panov
,
A. V.
,
Subbotin
,
V. G.
,
Afonichkin
,
V. K.
,
Khokhlov
,
V. A.
, and
Kormilitsyn
,
M. V.
,
2012
, “
Molten-Salt Reactors: New Possibilities, Problems and Solutions
,”
Atom. Energy
,
112
(
3
), pp. 
157
165
.10.1007/s10512-012-9537-2
9.
Hongjie
,
X.
,
Zhimin
,
D.
, and
Xiangzhou
,
C.
,
2014
, “
Some Physical Issues of the Thorium Molten Salt Reactor Nuclear Energy System
,”
Nucl. Phys. News
,
24
(
2
), pp. 
24
30
.10.1080/10619127.2014.910434
10.
Scarlat
,
R. O.
, and
Peterson
,
P. F.
,
2014
, “
The Current Status of Fluoride Salt Cooled High Temperature Reactor (FHR) Technology and Its Overlap With HIF Target Chamber Concepts
,”
Nucl. Instrum. Meth. Phys. Res. Sec. A: Accel. Spectrom. Detect. Assoc. Equip.
,
733
(
Jan.
), pp. 
57
64
.10.1016/j.nima.2013.05.094
11.
Scarlat
,
R. O.
,
Laufer
,
M. R.
,
Blandford
,
E. D.
,
Zweibaum
,
N.
,
Krumwiede
,
D. L.
,
Cisneros
,
A. T.
,
Andreades
,
C.
,
Forsberg
,
C. W.
,
Greenspan
,
E.
,
Hu
,
L.-W.
, and
Peterson
,
P. F.
,
2014
, “
Design and Licensing Strategies for the Fluoride-Salt-Cooled, High-Temperature Reactor (FHR) Technology
,”
Prog. Nucl. Energy
,
77
(
Nov.
), pp. 
406
420
.10.1016/j.pnucene.2014.07.002
12.
Leppänen
,
J.
,
2013
, “Serpent—A Continuous-Energy Monte Carlo Reactor Physics Burnup Calculation Code,”
Manual
,
VTT Technical Research Centre of Finland
,
Finland
.
13.
Santamarina
,
A.
,
Bernard
,
D.
, and
Rugama
,
Y.
,
2009
,
The JEFF-3.1.1 Nuclear Data Library: JEFF Report 22, Validation Results From JEF-2.2 to JEFF-3.1.1
,
Nuclear Energy Agency, Organisation for Economic Cooperation and Development, Issy-les-Moulineaux
,
France
.
14.
Hombourger
,
B.
,
2013
, “
Parametric Lattice Study for Conception of a Molten Salt Reactor in Closed Thorium Fuel Cycle
,” MS thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, Paul Scherrer Institut, Villigen, Switzerland.
15.
Lamarsh
,
J. R.
,
1972
,
Introduction to Nuclear Reactor Theory
,
Addison-Wesley
,
Reading, MA.
16.
Transatomic Power
,
2014
, Technical white paper.
17.
Fraas
,
A. P.
, and
Savolainen
,
A. W.
,
1956
, “
Design Report on the Aircraft Reactor Test
,” Tech. Rep. ORNL-2095,
Oak Ridge National Laboratory (ORNL)
, Oak Ridge, TN.
You do not currently have access to this content.