New medical device technology is essential for diagnosing, monitoring, and curing wide spectrum of diseases, anomalies, and inflictions. For neural applications, currently available devices are generally limited to either a curing or a probing function. In this paper, we review the technology requirements for a new neural probe and cure device technology currently under development. The concept of the probe-pin device that integrates the probes for neurochemistry, neuroelectricity, temperature, and pressure into a single embodiment with a wireless power transmission was designed for the purpose of deep brain feedback stimulation (DBFS) with in situ neural monitoring. The probe considered for monitoring neurochemistry is a microspectrometer. The feature and size of the microspectrometer are defined for the DBFS device. Two types of wireless power transmission technology were studied for the DBFS device operation. The test results of pig skin showed that both power transmission technologies demonstrated the feasibility of power feed through human tissue.

1.
Abbott
,
A.
, 2005, “
Deep in Thought
,”
Nature (London)
0028-0836,
436
, pp.
18
19
.
2.
Benabid
,
A. L.
,
Pollak
,
P.
,
Seigneuret
,
E.
,
Hoffmann
,
D.
,
Gay
,
E.
, and
Perret
,
J.
, 1993, “
Chronic VIM Thalamic Stimulation in Parkinson's Disease, Essential Tremor and Extra-Pyramidal Dyskinesias
,”
Acta Neurochir. Suppl. (Wien)
0065-1419,
58
, pp.
39
44
.
3.
Greenberg
,
B. D.
,
Rauch
,
S. L.
, and
Haber
,
S. N.
, 2010, “
Invasive Circuitry-Based Neurotherapeutics: Stereotactic Ablation and Deep Brain Stimulation for OCD
,”
Neuropsychopharmacology
0893-133X,
35
(
1
), pp.
317
336
.
4.
Choi
,
S. H.
,
Kim
,
J. H.
, and
Song
,
K. D.
, 2008, “
Microwave Rectenna Based Planarity Monitoring Sensor
,” Korean Patent No. 10-0835924 and U.S. Patent No. 12/294,048.
5.
Choi
,
S. H.
,
Song
,
K. D.
,
Golembiewski
,
W. G.
,
Chu
,
S. H.
, and
King
,
G. C.
, 2004, “
Microwave Power for Smart Material Actuators
,”
Smart Mater. Struct.
0964-1726,
13
(
1
), pp.
38
48
.
6.
Kim
,
J. H.
,
Yang
,
S. Y.
,
Song
,
K. D.
,
Jones
,
S.
, and
Choi
,
S. H.
, 2006, “
Performance Characterization of Flexible Dipole Rectennas for Smart Actuators
,”
Smart Mater. Struct.
0964-1726,
15
, pp.
809
815
.
7.
Choi
,
S. H.
,
Golembiewski
,
W. T.
, and
Song
,
K. D.
, 2000, “
Networked Array Circuitry for Power Allocation and Distribution (PAD)
,” Invention Disclosure,
NASA
Case No. LAR-16136-1-CU.
8.
Song
,
K. D.
,
Yi
,
W. J.
,
Chu
,
S. H.
, and
Choi
,
S. H.
, 2003, “
Microwave Driven Thunder Materials
,”
Microwave Opt. Technol. Lett.
0895-2477,
36
(
5
), pp.
331
333
.
9.
Lee
,
U.
, and
Choi
,
S. H.
, 2008, “
Sensory Control Using Neural Electronic Implants With Microwave Wireless Power Feed
,” Patent No. PCT/KR2008/002662.
10.
Lee
,
U.
,
Choi
,
S. H.
, and
Park
,
Y.
, 2008, “
Deep Brain Stimulation Device Having Wireless Power Feeding By Magnetic Induction
,” Patent No. PCT/KR2008/002664.
11.
1992, “
American National Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300 kHz to 100 GHz
,”
ANSI C95-1992
,
IEEE
,
New York
.
12.
Igor
,
L. M.
,
Tetsuo
,
H. U.
,
Ellen
,
R. G.
, and
Hedi
,
M.
, 2004, “
Quantum Dot Bioconjugates for Imaging, Labelling and Sensing
,”
Nature Mater.
1476-1122,
4
, pp.
435
446
.
13.
Donoghue
,
J. P.
, 2002, “
Connecting Cortex to Machines: Recent Advances in Brain Interfaces
,”
Nat. Neurosci.
1097-6256,
5
, pp.
1085
1088
.
14.
Moxon
,
K. A.
, and
Chapin
,
J. K.
, 1999, “
Cortico-Thalamic Interactions in Response to Whisker Stimulation in a Computer Model of the Rat Barrel System
,”
Neurocomputing
0925-2312,
26–27
, pp.
809
822
.
15.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1972,
Course of Theoretical Physics: Physical Kinetics
,
Pergamon
,
New York
.
16.
Känzig
,
W.
, 1955, “
Electron Spin Resonance of V1-Centers
,”
Phys. Rev.
0096-8250,
99
, pp.
1890
1891
.
17.
Jayarajah
,
C. N.
, and
Thompson
,
M.
, 2002, “
Signaling of Transcriptional Chemistry in the On-Line Detection Format
,”
Biosens. Bioelectron.
0956-5663,
17
(
3
), pp.
159
171
.
18.
Walker
,
G. W.
,
Sundar
,
V. C.
,
Rudzinski
,
C. M.
,
Wun
,
A. W.
,
Bawendi
,
M. G.
, and
Nocera
,
N. G.
, 2003, “
Quantum-Dot Optical Temperature Probes
,”
Appl. Phys. Lett.
0003-6951,
83
(
17
), pp.
3555
3558
.
19.
Gomez
,
N.
,
Winter
,
J. O.
,
Shieh
,
F.
,
Saunders
,
A. E.
,
Korgel
,
B. A.
, and
Schmidt
,
C. E.
, 2005, “
Challenges in Quantum Dot-Neuron Active Interfacing
,”
Talanta
0039-9140,
67
(
3
), pp.
462
471
.
20.
Qiao
,
B.
, and
Ruda
,
H. E.
, 1999, “
Evolution of a Two-Dimensional Quantum Cellular Neural Network Driven by an External Field
,”
J. Appl. Phys.
0021-8979,
85
(
5
), pp.
2952
2961
.
21.
Shah
,
B.
,
Clark
,
P. A.
,
Stroscio
,
M.
, and
Mao
,
J. J.
, 2005, “
Labeling and Imaging of Human Mesenchymal Stem Cells With Quantum Dot Bioconjugates During Proliferation and Osteogenic Differentiation in Long Term
,”
Nanotechnology
0957-4484,
1
, pp.
202
205
.
22.
Larson
,
D. T.
,
Zipfel
,
W. R.
,
Williams
,
R. M.
,
Clark
,
S.
,
Bruchez
,
M.
,
Wise
,
F.
, and
Webb
,
W. W.
, 2003,
Science
0036-8075,
300
(
5624
), pp.
1434
1436
.
23.
Nano World News
, 2005, “
Nanotechnology En Route From Bench to Bedside for Cancer Patients
,” Nano Science and Technology Institute (NSTI), http://www.nsti.org/news/item.html?id=31http://www.nsti.org/news/item.html?id=31
24.
Kim
,
J. W.
,
Choi
,
S. H.
,
Lillehei
,
P. T.
,
Chu
,
S. H.
,
Park
,
Y.
,
King
,
G. C.
, and
Elliott
,
J. R.
, 2004, “
Fabrication of Metallic Hollow Nanoparticles
,” Invention Disclosure,
NASA
Case No. LAR 17134-1.
25.
Park
,
Y.
,
Koch
,
L.
,
Song
,
K. D.
,
Park
,
S. J.
,
King
,
G. C.
, and
Choi
,
S. H.
, 2008,
J. Opt. A, Pure Appl. Opt.
1464-4258,
10
, pp.
095301
.
26.
Hirsch
,
L. R.
,
Jackson
,
J. B.
,
Lee
,
A.
,
Halas
,
N. J.
, and
West
,
J. L.
, 2003, “
A Whole Blood Immunoassay Using Gold Nanoshells
,”
Anal. Chem.
0003-2700,
75
, pp.
2377
2381
.
27.
Kitaura
,
N.
,
Ogata
,
S.
, and
Mori
,
Y.
, 1995, “
Spectrometer Employing a Micro-Fresnel Lens
,”
Opt. Eng.
0091-3286,
34
, pp.
584
588
.
You do not currently have access to this content.