As one of the most promising anode materials for high-capacity lithium ion batteries (LIBs), silicon nanowires (SiNWs) have been studied extensively. The metal-assisted chemical etching (MACE) is a low-cost and scalable method for SiNW synthesis. Nanoparticle emissions from the MACE process, however, are of grave concerns due to their hazardous effects on both occupational and public health. In this study, both airborne and aqueous nanoparticle emissions from the MACE process for SiNWs with three sizes of 90 nm, 120 nm, and 140 nm are experimentally investigated. The prepared SiNWs are used as anodes of LIB coin cells, and the experimental results reveal that the initial discharge and charge capacities of LIB electrodes are 3636 and 2721 mAh g−1 with 90 nm SiNWs, 3779 and 2712 mAh g−1 with 120 nm SiNWs, and 3611 and 2539 mAh g−1 with 140 nm SiNWs. It is found that for 1 kW h of LIB electrodes, the MACE process for 140 nm SiNWs produces a high concentration of airborne nanoparticle emissions of 2.48 × 109 particles/cm3; the process for 120 nm SiNWs produces a high mass concentration of aqueous particle emissions, with a value of 9.95 × 105 mg/L. The findings in this study can provide experimental data of nanoparticle emissions from the MACE process for SiNWs for LIB applications and can help the environmental impact assessment and life cycle assessment of the technology in the future.

References

1.
Armand
,
M.
, and
Tarascon
,
J.-M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
2.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
(
9
), pp.
2419
2430
.
3.
Tarascon
,
J.-M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.
4.
Roy
,
P.
, and
Srivastava
,
S. K.
,
2015
, “
Nanostructured Anode Materials for Lithium Ion Batteries
,”
J. Mater. Chem. A
,
3
(
6
), pp.
2454
2484
.
5.
Nazri
,
G.-A.
, and
Pistoia
,
G.
,
2008
,
Lithium Batteries: Science and Technology
,
Springer Science & Business Media
, Berlin.
6.
Zhang
,
W.-J.
,
2011
, “
A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries
,”
J. Power Sources
,
196
(
1
), pp.
13
24
.
7.
Boukamp
,
B.
,
Lesh
,
G.
, and
Huggins
,
R.
,
1981
, “
All-Solid Lithium Electrodes With Mixed-Conductor Matrix
,”
J. Electrochem. Soc.
,
128
(
4
), pp.
725
729
.
8.
Wu
,
H.
, and
Cui
,
Y.
,
2012
, “
Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries
,”
Nano Today
,
7
(
5
), pp.
414
429
.
9.
Beaulieu
,
L.
,
Eberman
,
K.
,
Turner
,
R.
,
Krause
,
L.
, and
Dahn
,
J.
,
2001
, “
Colossal Reversible Volume Changes in Lithium Alloys
,”
Electrochem. Solid-State Lett.
,
4
(
9
), pp.
A137
A140
.
10.
Li
,
J.-Y.
,
Xu
,
Q.
,
Li
,
G.
,
Yin
,
Y.-X.
,
Wan
,
L.-J.
, and
Guo
,
Y.-G.
,
2017
, “
Research Progress Regarding Si-Based Anode Materials Towards Practical Application in High Energy Density Li-Ion Batteries
,”
Mater. Chem. Front.
,
1
(
9
), pp.
1691
1708
.
11.
Peng
,
K.
,
Jie
,
J.
,
Zhang
,
W.
, and
Lee
,
S.-T.
,
2008
, “
Silicon Nanowires for Rechargeable Lithium-Ion Battery Anodes
,”
Appl. Phys. Lett.
,
93
(
3
), p.
033105
.
12.
Cui
,
L.-F.
,
Yang
,
Y.
,
Hsu
,
C.-M.
, and
Cui
,
Y.
,
2009
, “
Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries
,”
Nano Lett.
,
9
(
9
), pp.
3370
3374
.
13.
Liu
,
X. H.
,
Zhang
,
L. Q.
,
Zhong
,
L.
,
Liu
,
Y.
,
Zheng
,
H.
,
Wang
,
J. W.
,
Cho
,
J.-H.
,
Dayeh
,
S. A.
,
Picraux
,
S. T.
, and
Sullivan
,
J. P.
,
2011
, “
Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes
,”
Nano Letters
,
11
(
6
), pp.
2251
2258
.
14.
Magasinski
,
A.
,
Dixon
,
P.
,
Hertzberg
,
B.
,
Kvit
,
A.
,
Ayala
,
J.
, and
Yushin
,
G.
,
2010
, “
High-Performance Lithium-Ion Anodes Using a Hierarchical Bottom-Up Approach
,”
Nat. Mater.
,
9
(
4
), pp.
353
358
.
15.
Ge
,
M.
,
Rong
,
J.
,
Fang
,
X.
,
Zhang
,
A.
,
Lu
,
Y.
, and
Zhou
,
C.
,
2013
, “
Scalable Preparation of Porous Silicon Nanoparticles and Their Application for Lithium-Ion Battery Anodes
,”
Nano Res.
,
6
(
3
), pp.
174
181.
16.
Song
,
T.
,
Xia
,
J.
,
Lee
,
J.-H.
,
Lee
,
D. H.
,
Kwon
,
M.-S.
,
Choi
,
J.-M.
,
Wu
,
J.
,
Doo
,
S. K.
,
Chang
,
H.
, and
Park
,
W. I.
,
2010
, “
Arrays of Sealed Silicon Nanotubes as Anodes for Lithium Ion Batteries
,”
Nano Lett.
,
10
(
5
), pp.
1710
1716
.
17.
Park
,
M.-H.
,
Kim
,
M. G.
,
Joo
,
J.
,
Kim
,
K.
,
Kim
,
J.
,
Ahn
,
S.
,
Cui
,
Y.
, and
Cho
,
J.
,
2009
, “
Silicon Nanotube Battery Anodes
,”
Nano Lett.
,
9
(
11
), pp.
3844
3847
.
18.
Yao
,
Y.
,
McDowell
,
M. T.
,
Ryu
,
I.
,
Wu
,
H.
,
Liu
,
N.
,
Hu
,
L.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2011
, “
Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes With Long Cycle Life
,”
Nano Lett.
,
11
(
7
), pp.
2949
2954
.
19.
Wang
,
X.-L.
, and
Han
,
W.-Q.
,
2010
, “
Graphene Enhances Li Storage Capacity of Porous Single-Crystalline Silicon Nanowires
,”
ACS Appl. Mater. Interfaces
,
2
(
12
), pp.
3709
3713
.
20.
Kim
,
H.
,
Han
,
B.
,
Choo
,
J.
, and
Cho
,
J.
,
2008
, “
Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries
,”
Angew. Chem.
,
120
(
52
), pp.
10305
10308
.
21.
Ge
,
M.
,
Rong
,
J.
,
Fang
,
X.
, and
Zhou
,
C.
,
2012
, “
Porous Doped Silicon Nanowires for Lithium Ion Battery Anode With Long Cycle Life
,”
Nano Lett.
,
12
(
5
), pp.
2318
2323
.
22.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.
23.
Westwater
,
J.
,
Gosain
,
D.
,
Tomiya
,
S.
,
Usui
,
S.
, and
Ruda
,
H.
,
1997
, “
Growth of Silicon Nanowires Via Gold/Silane Vapor–Liquid–Solid Reaction
,”
J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process., Meas., Phenom.
,
15
(
3
), pp.
554
557
.
24.
Sunkara
,
M. K.
,
Sharma
,
S.
,
Miranda
,
R.
,
Lian
,
G.
, and
Dickey
,
E.
,
2001
, “
Bulk Synthesis of Silicon Nanowires Using a Low-Temperature Vapor–Liquid–Solid Method
,”
Appl. Phys. Lett.
,
79
(
10
), pp.
1546
1548
.
25.
Wittemann
,
J. V.
,
Münchgesang
,
W.
,
Senz
,
S.
, and
Schmidt
,
V.
,
2010
,
Silver Catalyzed Ultrathin Silicon Nanowires Grown by Low-Temperature Chemical-Vapor-Deposition
,
American Institute of Physics
, Weinberg, Germany.
26.
Hofmann
,
S.
,
Ducati
,
C.
,
Neill
,
R.
,
Piscanec
,
S.
,
Ferrari
,
A.
,
Geng
,
J.
,
Dunin-Borkowski
,
R.
, and
Robertson
,
J.
,
2003
, “
Gold Catalyzed Growth of Silicon Nanowires by Plasma Enhanced Chemical Vapor Deposition
,”
J. Appl. Phys.
,
94
(
9
), pp.
6005
6012
.
27.
Zhang
,
Y.
,
Tang
,
Y.
,
Wang
,
N.
,
Yu
,
D.
,
Lee
,
C.
,
Bello
,
I.
, and
Lee
,
S.
,
1998
, “
Silicon Nanowires Prepared by Laser Ablation at High Temperature
,”
Appl. Phys. Lett.
,
72
(
15
), pp.
1835
1837
.
28.
Yang
,
Y.-H.
,
Wu
,
S.-J.
,
Chiu
,
H.-S.
,
Lin
,
P.-I.
, and
Chen
,
Y.-T.
,
2004
, “
Catalytic Growth of Silicon Nanowires Assisted by Laser Ablation
,”
J. Phys. Chem. B
,
108
(
3
), pp.
846
852
.
29.
Zhang
,
M.-L.
,
Peng
,
K.-Q.
,
Fan
,
X.
,
Jie
,
J.-S.
,
Zhang
,
R.-Q.
,
Lee
,
S.-T.
, and
Wong
,
N.-B.
,
2008
, “
Preparation of Large-Area Uniform Silicon Nanowires Arrays Through Metal-Assisted Chemical Etching
,”
J. Phys. Chem. C
,
112
(
12
), pp.
4444
4450
.
30.
Huang
,
Z.
,
Geyer
,
N.
,
Werner
,
P.
,
De Boor
,
J.
, and
Gösele
,
U.
,
2011
, “
Metal-Assisted Chemical Etching of Silicon: A Review
,”
Adv. Mater.
,
23
(
2
), pp.
285
308
.
31.
Srivastava
,
S. K.
,
Kumar
,
D.
,
Schmitt
,
S.
,
Sood
,
K.
,
Christiansen
,
S.
, and
Singh
,
P.
,
2014
, “
Large Area Fabrication of Vertical Silicon Nanowire Arrays by Silver-Assisted Single-Step Chemical Etching and Their Formation Kinetics
,”
Nanotechnology
,
25
(
17
), p.
175601
.
32.
Chartier
,
C.
,
Bastide
,
S.
, and
Lévy-Clément
,
C.
,
2008
, “
Metal-Assisted Chemical Etching of Silicon in HF–H2O2
,”
Electrochim. Acta
,
53
(
17
), pp.
5509
5516
.
33.
Geyer
,
N.
,
Fuhrmann
,
B.
,
Huang
,
Z.
,
de Boor
,
J.
,
Leipner
,
H. S.
, and
Werner
,
P.
,
2012
, “
Model for the Mass Transport During Metal-Assisted Chemical Etching With Contiguous Metal Films as Catalysts
,”
J. Phys. Chem. C
,
116
(
24
), pp.
13446
13451
.
34.
Balasundaram
,
K.
,
2015
,
Metal-Assisted Chemical Etching as a Disruptive Platform for Multi-Dimensional Semiconductor Sculpting
,
University of Illinois at Urbana-Champaign
, Champaign, IL.
35.
Li
,
M.
,
Li
,
Y.
,
Liu
,
W.
,
Yue
,
L.
,
Li
,
R.
,
Luo
,
Y.
,
Trevor
,
M.
,
Jiang
,
B.
,
Bai
,
F.
, and
Fu
,
P.
,
2016
, “
Metal-Assisted Chemical Etching for Designable Monocrystalline Silicon Nanostructure
,”
Mater. Res. Bull.
,
76
, pp.
436
449
.
36.
Bertolini
,
J. C.
,
1992
, “
Hydrofluoric Acid: A Review of Toxicity
,”
J. Emerg. Med.
,
10
(
2
), pp.
163
168
.
37.
Hussain
,
S. M.
,
Javorina
,
A. K.
,
Schrand
,
A. M.
,
Duhart
,
H. M.
,
Ali
,
S. F.
, and
Schlager
,
J. J.
,
2006
, “
The Interaction of Manganese Nanoparticles With PC-12 Cells Induces Dopamine Depletion
,”
Toxicol. Sci.
,
92
(
2
), pp.
456
463
.
38.
Hussain
,
S.
,
Hess
,
K.
,
Gearhart
,
J.
,
Geiss
,
K.
, and
Schlager
,
J.
,
2005
, “
In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells
,”
Toxicol. Vitro
,
19
(
7
), pp.
975
983
.
39.
Braydich-Stolle
,
L.
,
Hussain
,
S.
,
Schlager
,
J. J.
, and
Hofmann
,
M.-C.
,
2005
, “
In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells
,”
Toxicol. Sci.
,
88
(
2
), pp.
412
419
.
40.
USEPA
,
2007
, “
Nanotechnology White Paper
,”
Environmental Protection Agency
,
Washington, DC
, Report No. EPA 100/B-07/001.
41.
Donaldson
,
K.
,
Li
,
X.
, and
MacNee
,
W.
,
1998
, “
Ultrafine (Nanometre) Particle Mediated Lung Injury
,”
J. Aerosol Sci.
,
29
(
5–6
), pp.
553
560
.
42.
Donaldson
,
K.
,
Stone
,
V.
,
Gilmour
,
P.
,
Brown
,
D.
, and
MacNee
,
W.
,
2000
, “
Ultrafine Particles: Mechanisms of Lung Injury
,”
Philos. Trans. R. Soc., A
,
358
(
1775
), pp.
2741
2749
.
43.
Pope
,
C. A.
, III
,
Burnett
,
R. T.
,
Thun
,
M. J.
,
Calle
,
E. E.
,
Krewski
,
D.
,
Ito
,
K.
, and
Thurston
,
G. D.
,
2002
, “
Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution
,”
JAMA
,
287
(
9
), pp.
1132
1141
.
44.
Hischier
,
R.
, and
Walser
,
T.
,
2012
, “
Life Cycle Assessment of Engineered Nanomaterials: State of the Art and Strategies to Overcome Existing Gaps
,”
Sci. Total Environ.
,
425
, pp.
271
282
.
45.
Kulkarni
,
P.
,
Baron
,
P. A.
, and
Willeke
,
K.
,
2011
,
Aerosol Measurement: Principles, Techniques, and Applications
,
Wiley, Hoboken, NJ
.
46.
Rosalyne, A.-P., 1995, “
Features Added to the Particle Size Distribution Software
,” Holtsville, NY, accessed Jan. 4, 2019, http://www.asi-team.com/asi%20team/brookhaven/SOP%20for%20Particle%20Sizing.pdf
47.
Wolf, R., 2005, “
USGS Science for a Changing World
,” Washington, DC, accessed Jan. 4, 2019, https://crustal.usgs.gov/laboratories/icpms/intro.html
48.
Wang
,
F.
,
Gao
,
X.
,
Ma
,
L.
,
Li
,
T.
, and
Yuan
,
C.
,
2017
, “
Sustainability Analysis of Silicon Nanowire Fabrication for High Performance Lithium Ion Battery Anode
,”
Procedia Manuf.
,
7
, pp.
151
156
.
49.
Pyatilova
,
O. V.
,
Gavrilov
,
S. A.
,
Dronov
,
A. A.
,
Grishina
,
Y. S.
, and
Belov
,
A. N.
,
2014
, “
Role of Ag+ Ion Concentration on Metal-Assisted Chemical Etching of Silicon
,” Solid State Phenomena, Trans Tech Publications, Zelenograd, Moscow, Russia, pp.
103
108
.
50.
Maynard
,
A. D.
, and
Kuempel
,
E. D.
,
2005
, “
Airborne Nanostructured Particles and Occupational Health
,”
J. Nanopart. Res.
,
7
(
6
), pp.
587
614
.
51.
Sioutas
,
C.
,
Delfino
,
R. J.
, and
Singh
,
M.
,
2005
, “
Exposure Assessment for Atmospheric Ultrafine Particles (UFPs) and Implications in Epidemiologic Research
,”
Environ. Health Perspect.
,
113
(
8
), pp.
947
955.
52.
Delfino
,
R. J.
,
Sioutas
,
C.
, and
Malik
,
S.
,
2005
, “
Potential Role of Ultrafine Particles in Associations Between Airborne Particle Mass and Cardiovascular Health
,”
Environ. Health Perspect.
,
113
(
8
), pp.
934
946
.
53.
Ouertani
,
R.
,
Hamdi
,
A.
,
Amri
,
C.
,
Khalifa
,
M.
, and
Ezzaouia
,
H.
,
2014
, “
Formation of Silicon Nanowire Packed Films From Metallurgical-Grade Silicon Powder Using a Two-Step Metal-Assisted Chemical Etching Method
,”
Nanoscale Res. Lett.
,
9
(
1
), p.
574
.
54.
Qiu
,
T.
, and
Chu
,
P. K.
,
2008
, “
Self-Selective Electroless Plating: An Approach for Fabrication of Functional 1D Nanomaterials
,”
Mater. Sci. Eng., R
,
61
(
1–6
), pp.
59
77
.
55.
Dam
,
D. T.
,
Wang
,
X.
, and
Lee
,
J.-M.
,
2014
, “
Graphene/NiO Nanowires: Controllable One-Pot Synthesis and Enhanced Pseudocapacitive Behavior
,”
ACS Appl. Mater. Interfaces
,
6
(
11
), pp.
8246
8256
.
56.
Moulder
,
J. F.
, and
Chastain
,
J.
,
1995
,
Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
,
Physical Electronics
, Perkin-Elmer Corporation,
Eden Prairie, MN
.
57.
Ram
,
P.
,
Singh
,
J.
,
Ramamohan
,
T.
,
Venkatachalam
,
S.
, and
Sundarsingh
,
V.
,
1997
, “
Surface Properties of Electrodeposited a-Si:C:H:F Thin Films by X-Ray Photoelectron Spectroscopy
,”
J. Mater. Sci.
,
32
(
23
), pp.
6305
6310
.
58.
Huang
,
R.
, and
Zhu
,
J.
,
2010
, “
Silicon Nanowire Array Films as Advanced Anode Materials for Lithium-Ion Batteries
,”
Mater. Chem. Phys.
,
121
(
3
), pp.
519
522
.
59.
Szczech
,
J. R.
, and
Song
,
J.
,
2011
, “
Nanostructured Silicon for High Capacity Lithium Battery Anodes
,”
Energy Environ. Sci.
,
4
(
1
), pp.
56
72
.
60.
Zuo
,
X. X.
,
Zhu
,
J.
,
Muller-Buschbaum
,
P.
, and
Cheng
,
Y. J.
,
2017
, “
Silicon Based Lithium-Ion Battery Anodes: A Chronicle Perspective Review
,”
Nano Energy
,
31
, pp.
113
143
.
You do not currently have access to this content.