Abstract

Conventional rehabilitation programs often lack precise real-time feedback, leading to varied training results at different centers. To address this, personalized rehabilitation strategies have been developed using robotic technologies and exoskeletons with assist-as-needed (AAN) controllers to improve recovery rates for individuals with stroke and neuromuscular disorders. This research introduces an automated therapy approach with a patient-specific AAN support strategy that provides immediate feedback, enhancing the rehabilitation process. The system uses minimal data to create effective personalized models and integrates sensors and algorithms for continuous monitoring, improving the efficacy of therapy. Initial trials with an exoskeleton that focused on elbow movements showed promising results in adjusting support in real-time and providing personalized interventions through torque-controlled motors. This system assesses impairment levels, visualizes motor energy needs, and helps design customized rehabilitation programs, significantly enhancing therapeutic results.

References

1.
Burris
,
J. E.
,
2017
, “
Stroke Rehabilitation: Current American Stroke Association Guidelines, Care, and Implications for Practice
,”
Mo. Med.
,
114
(
1
), pp.
40
43
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143585/
2.
Benjamin
,
E. J.
,
Blaha
,
M. J.
,
Chiuve
,
S. E.
,
Cushman
,
M.
,
Das
,
S. R.
,
Deo
,
R.
, and
de Ferranti
,
S. D.
, et al.,
2017
, “
Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association
,”
Circulation
,
135
(
10
), pp.
e146
e603
.10.1161/CIR.0000000000000485
3.
Lo
,
A. C.
,
Guarino
,
P. D.
,
Richards
,
L. G.
,
Haselkorn
,
J. K.
,
Wittenberg
,
G. F.
,
Federman
,
D. G.
, and
Ringer
,
R. J.
, et al.,
2010
, “
Robot-Assisted Therapy for Long-Term Upper-Limb Impairment After Stroke
,”
New Engl. J. Med.
,
362
(
19
), pp.
1772
1783
.10.1056/NEJMoa0911341
4.
Garcia-Sanjuan
,
F.
,
Jaen
,
J.
, and
Nacher
,
V.
,
2017
, “
Tangibot: A Tangible-Mediated Robot to Support Cognitive Games for Ageing People—A Usability Study
,”
Pervasive Mobile Comput.
,
34
, pp.
91
105
.10.1016/j.pmcj.2016.08.007
5.
Wahl
,
A.-S.
, and
Schwab
,
M. E.
,
2014
, “
Finding an Optimal Rehabilitation Paradigm After Stroke: Enhancing Fiber Growth and Training of the Brain at the Right Moment
,”
Front. Hum. Neurosci.
,
8
, p.
381
.10.3389/fnhum.2014.00381
6.
Klamroth-Marganska
,
V.
,
Blanco
,
J.
,
Campen
,
K.
,
Curt
,
A.
,
Dietz
,
V.
,
Ettlin
,
T.
, and
Felder
,
M.
, et al.,
2014
, “
Three-Dimensional, Task-Specific Robot Therapy of the Arm After Stroke: A Multicentre, Parallel-Group Randomised Trial
,”
Lancet Neurol.
,
13
(
2
), pp.
159
166
.10.1016/S1474-4422(13)70305-3
7.
Agarwal
,
P.
, and
Deshpande
,
A. D.
,
2018
, “
Subject-Specific Assist-as-Needed Controllers for a Hand Exoskeleton for Rehabilitation
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
508
515
.10.1109/LRA.2017.2768124
8.
Teramae
,
T.
,
Noda
,
T.
, and
Morimoto
,
J.
,
2018
, “
EMG-Based Model Predictive Control for Physical Human–Robot Interaction: Application for Assist-as-Needed Control
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
210
217
.10.1109/LRA.2017.2737478
9.
Mehdi
,
H.
, and
Boubaker
,
O.
,
2012
, “
Stiffness and Impedance Control Using Lyapunov Theory for Robot-Aided Rehabilitation
,”
Int. J. Soc. Rob.
,
4
(
S1
), pp.
107
119
.10.1007/s12369-011-0128-5
10.
Hu
,
B.
,
Zhang
,
F.
,
Lu
,
H.
,
Zou
,
H.
,
Yang
,
J.
, and
Yu
,
H.
,
2021
, “
Design and Assist-as-Needed Control of Flexible Elbow Exoskeleton Actuated by Nonlinear Series Elastic Cable Driven Mechanism
,”
Actuators
,
10
(
11
), p.
290
.10.3390/act10110290
11.
George
,
J. A.
,
Gunnell
,
A. J.
,
Archangeli
,
D.
,
Hunt
,
G.
,
Ishmael
,
M.
,
Foreman
,
K. B.
, and
Lenzi
,
T.
,
2021
, “
Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-Linear Reorganization of Locomotor Output
,”
Front. Neurorob.
,
15
, p.
700823
.10.3389/fnbot.2021.700823
12.
Delgado
,
P.
, and
Yihun
,
Y.
,
2023
, “
Integration of Task-Based Exoskeleton With an Assist-as-Needed Algorithm for Patient-Centered Elbow Rehabilitation
,”
Sensors
,
23
(
5
), p.
2460
.10.3390/s23052460
13.
Delgado
,
P.
,
Gonzalez
,
N.
, and
Yihun
,
Y.
,
2023
, “
Integration of sEMG-Based Learning and Adaptive Fuzzy Sliding Mode Control for an Exoskeleton Assist-as-Needed Support System
,”
Machines
,
11
(
7
), p.
671
.10.3390/machines11070671
14.
Caulcrick
,
C.
,
Huo
,
W.
,
Hoult
,
W.
, and
Vaidyanathan
,
R.
,
2021
, “
Human Joint Torque Modelling With MMG and EMG During Lower Limb Human-Exoskeleton Interaction
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
7185
7192
.10.1109/LRA.2021.3097832
15.
Lequerica
,
A. H.
,
Donnell
,
C. S.
, and
Tate
,
D. G.
,
2009
, “
Patient Engagement in Rehabilitation Therapy: Physical and Occupational Therapist Impressions
,”
Disability Rehabil.
,
31
(
9
), pp.
753
760
.10.1080/09638280802309095
16.
Ellul
,
J.
,
Watkins
,
C.
,
Ferguson
,
N.
,
Barer
,
D.
, and
Rowe
,
J.
,
1993
, “
Increasing Patient Engagement in Rehabilitation Activities
,”
Clin. Rehabil.
,
7
(
4
), pp.
297
302
.10.1177/026921559300700405
17.
De Luca
,
C. J.
,
1984
, “
Myoelectrical Manifestations of Localized Muscular Fatigue in Humans
,”
Crit. Rev. Biomed. Eng.
,
11
(
4
), pp.
251
279
.https://pubmed.ncbi.nlm.nih.gov/6391814/
18.
Maton
,
B.
, and
Gamet
,
D.
,
1989
, “
The Fatigability of Two Agonistic Muscles in Human Isometric Voluntary Submaximal Contraction: An EMG Study: II. Motor Unit Firing Rate and Recruitment
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
58
(
4
), pp.
369
374
.10.1007/BF00643511
19.
Konrad
,
P.
,
2005
, “
The ABC of EMG
,”
A Practical Introduction to Kinesiological Electromyography
,
1
(
2005
), pp.
30
35
.https://hermanwallace.com/download/The_ABC_of_EMG_by_Peter_Konrad.pdf
You do not currently have access to this content.