Abstract

We present an intelligent foot orthosis (IFO) designed to prevent lateral falls during walking by employing a magnetorheological (MR) fluid brake. This study aims to demonstrate the feasibility of evaluating effectiveness of the proposed orthosis in fall prevention. Seventeen healthy adults underwent four conditions: (1) without IFO, (2) with IFO and current-OFF, (3) with IFO current-ON, and (4) with IFO and control-ON. Gait was assessed by three-dimensional motion capture and with ground reaction force. Postural changes on the frontal plane were measured, and the mediolateral center of gravity and center of pressure inclination angle (ML COG-COP IA) was calculated. Additionally, tibialis anterior (TA) and peroneus longus (PL) muscle activity during walking were measured using surface electromyography. Results indicate a significant increase in ML COG-COP IA in (3). No significant differences were found in muscle activity between conditions. The study suggests that the posture's deviation from the lateral fall direction in (3) is primarily due to wearing the IFO, emphasizing human postural control over muscle activity. A negative correlation between ML COG-COP IA and TA muscle activity under (4), implies that individuals with lower TA muscle activity may benefit more from IFO fall prevention. In conclusion, the study demonstrates the feasibility of preventing lateral falls in human walking using the proposed orthosis with an MR fluid brake. The general efficacy of the orthosis in lateral fall prevention is suggested, emphasizing the need for further development.

References

1.
West
,
B. A.
,
Bhat
,
G.
,
Stevens
,
J.
, and
Bergen
,
G.
,
2015
, “
Assistive Device Use and Mobility-Related Factors Among Adults Aged>/=65years
,”
J. Saf. Res.
,
55
, pp.
147
150
.10.1016/j.jsr.2015.08.010
2.
van Dam
,
K.
,
Gielissen
,
M.
,
Bles
,
R.
,
van der Poel
,
A.
, and
Boon
,
B.
,
2023
, “
The Impact of Assistive Living Technology on Perceived Independence of People With a Physical Disability in Executing Daily Activities: A Systematic Literature Review
,”
Disabil. Rehabil. Assist. Technol.
,
19
(
4
), pp.
1262
1271
.10.1080/17483107.2022.2162614
3.
WHO,
2022
, “
Ageing and Health
,” World Health Organization, Geneva, Switzerland, accessed Aug. 19, 2024, https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
4.
United Nations
, 2024, “
Ageing
,” United Nations, accessed Feb. 1, 2024, https://www.un.org/en/global-issues/ageing
5.
Wong
,
E. L.
,
Woo
,
J.
,
Cheung
,
A. W.
, and
Yeung
,
P. Y.
,
2011
, “
Determinants of Participation in a Fall Assessment and Prevention Programme Among Elderly Fallers in Hong Kong: Prospective Cohort Study
,”
J. Adv. Nurs.
,
67
(
4
), pp.
763
773
.10.1111/j.1365-2648.2010.05535.x
6.
Suzuki
,
T.
,
2002
, “
Spasticity Control in Exercise Therapy
,”
J. Clin. Rehabil.
,
11
, pp.
907
912
.
7.
Hayes
,
W. C.
,
Myers
,
E. R.
,
Morris
,
J. N.
,
Gerhart
,
T. N.
,
Yett
,
H. S.
, and
Lipsitz
,
L. A.
,
1993
, “
Impact Near the Hip Dominates Fracture Risk in Elderly Nursing Home Residents Who Fall
,”
Calcif. Tissue Int.
,
52
(
3
), pp.
192
198
.10.1007/BF00298717
8.
Nevitt
,
M. C.
, and
Cummings
,
S. R.
, and
Study of Osteoporotic Fractures Research Group,
1993
, “
Type of Fall and Risk of Hip and Wrist Fractures: The Study of Osteoporotic Fractures
,”
J. Am. Geriatr. Soc.
,
41
(
11
), pp.
1226
1234
.10.1111/j.1532-5415.1993.tb07307.x
9.
Pyykkö
,
I.
,
Jäntti
,
P.
, and
Aalto
,
H.
,
1990
, “
Postural Control in Elderly Subjects
,”
Age Ageing
,
19
(
3
), pp.
215
221
.10.1093/ageing/19.3.215
10.
Pirker
,
W.
, and
Katzenschlager
,
R.
,
2017
, “
Gait Disorders in Adults and the Elderly: A Clinical Guide
,”
Wien Klin. Wochenschr.
,
129
(
3–4
), pp.
81
95
.10.1007/s00508-016-1096-4
11.
Huang
,
S. J.
,
Yu
,
X. M.
,
Wang
,
K.
,
Wang
,
L. J.
,
Wu
,
X. B.
,
Wu
,
X.
, and
Niu
,
W. X.
,
2020
, “
Short-Step Adjustment and Proximal Compensatory Strategies Adopted by Stroke Survivors With Knee Extensor Spasticity for Obstacle Crossing
,”
Front. Bioeng. Biotechnol.
,
8
, p.
939
.10.3389/fbioe.2020.00939
12.
Lee
,
H. J.
, and
Chou
,
L. S.
,
2006
, “
Detection of Gait Instability Using the Center of Mass and Center of Pressure Inclination Angles
,”
Arch. Phys. Med. Rehabil.
,
87
(
4
), pp.
569
575
.10.1016/j.apmr.2005.11.033
13.
Lee
,
Y. J.
,
Liang
,
J. N.
,
Chen
,
B.
, and
Aruin
,
A. S.
,
2019
, “
Characteristics of Medial-Lateral Postural Control While Exposed to the External Perturbation in Step Initiation
,”
Sci. Rep.
,
9
(
1
), p.
16817
.10.1038/s41598-019-53379-9
14.
Chen
,
C.-J.
, and
Chou
,
L.-S.
,
2007
, “
Center of Mass and Ankle Inclination Angles: An Alternative Detection of Gait Instability
,”
J. Biomech.
,
40
, p.
S286
.10.1016/S0021-9290(07)70282-8
15.
Huang
,
T.-C.
,
Huang
,
H.-P.
,
Wu
,
K.-W.
,
Pao
,
J.-L.
,
Chen
,
C.-K.
,
Wang
,
T.-M.
, and
Lu
,
T.-W.
,
2022
, “
Body's Center of Mass Motion Relative to the Center of Pressure During Gait, and Its Correlation With Standing Balance in Patients With Lumbar Spondylosis
,”
Appl. Sci.
,
12
(
24
), p.
12915
.10.3390/app122412915
16.
Luo
,
J.
,
Zhao
,
Y.
,
Ruan
,
L.
,
Mao
,
S.
, and
Fu
,
C.
,
2022
, “
Estimation of CoM and CoP Trajectories During Human Walking Based on a Wearable Visual Odometry Device
,”
IEEE Trans. Autom. Sci. Eng.
,
19
(
1
), pp.
396
409
.10.1109/TASE.2020.3036530
17.
Nederhand
,
M. J.
,
Prinsen
,
E. C.
, and
Rietman
,
H. J.
, “
Decoupling of the Centre of Mass (CoM) and Centre of Pressure (CoP) During Gait Initiation. Introduction of a New Variable
,”
Proceedings of Converging Clinical and Engineering Research on Neurorehabilitation
,
J. L.
Pons
,
D.
Torricelli
, and
M.
Pajaro
, eds.,
Springer
,
Berlin Heidelberg
, pp.
667
671
.
18.
Iritani
,
M
,
2011
,
Iritani Shiki Sokuteiban Kisohen
,
Publisher of Motion and Medical
,
Yokohama, Kanagawa, Japan
.
19.
Gray
,
H.
, and
Lewis
,
W. H.
,
1918
,
Anatomy of the Human Body
,
Lea & Febiger
,
Philadelphia, PA
.
20.
Perry
,
J.
, and
Burnfield
,
J. M.
,
2010
, “
Gait Analysis, Normal and Pathological Function
,”
J. Sports Sci. Med.,
9
(
2
), p.
353
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761742/
21.
Mansfield
,
P. J.
, and
Neumann
,
D. A.
,
2019
,
Essentials of Kinesiology for the Physical Therapist Assistant
, 3rd ed.,
P. J.
Mansfield
, and
D. A.
Neumann
, eds.,
Mosby, St. Louis, MO
, pp.
v
vii
.
22.
Nakamura
,
R.
,
Saito
,
H.
, and
H
,
N.
,
2007
,
Fundamental Kinesiology
,
Ishiyaku Publishers Inc.
,
Tokyo, Japan
.
23.
Brockett
,
C. L.
, and
Chapman
,
G. J.
,
2016
, “
Biomechanics of the Ankle
,”
Orthopaedics Trauma
,
30
(
3
), pp.
232
238
.10.1016/j.mporth.2016.04.015
24.
Bavdek
,
R.
,
Zdolšek
,
A.
,
Strojnik
,
V.
, and
Dolenec
,
A.
,
2018
, “
Peroneal Muscle Activity During Different Types of Walking
,”
J. Foot Ankle Res.
,
11
(
1
), p.
50
.10.1186/s13047-018-0291-0
25.
Smee
,
D.
,
Pumpa
,
K.
,
Falchi
,
M.
, and
Lithander
,
F. E.
,
2015
, “
The Relationship Between Diet Quality and Falls Risk, Physical Function and Body Composition in Older Adults
,”
J. Nutr. Health Aging
,
19
(
10
), pp.
1037
1042
.10.1007/s12603-015-0666-x
26.
Hirase
,
T.
,
Inokuchi
,
S.
,
Matsusaka
,
N.
,
Nakahara
,
K.
, and
Okita
,
M.
,
2014
, “
A Modified Fall Risk Assessment Tool That is Specific to Physical Function Predicts Falls in Community-Dwelling Elderly People
,”
J Geriatr. Phys. Ther.
,
37
(
4
), pp.
159
165
.10.1519/JPT.0b013e3182abe7cb
27.
He
,
Y.
,
Zhang
,
H.
,
Song
,
M.
,
Wu
,
H.
, and
Pi
,
H.
,
2022
, “
Association Between Fatigue and Falls Risk Among the Elderly Aged Over 75 Years in China: The Chain Mediating Role of Falls Efficacy and Lower Limb Function
,”
Front. Public Health
,
10
, p.
850533
.10.3389/fpubh.2022.850533
28.
Szulc
,
P.
,
Feyt
,
C.
, and
Chapurlat
,
R.
,
2016
, “
High Risk of Fall, Poor Physical Function, and Low Grip Strength in Men With Fracture-the STRAMBO Study
,”
J. Cachexia Sarcopenia Muscle
,
7
(
3
), pp.
299
311
.10.1002/jcsm.12066
29.
Ibrahim
,
M.
,
Shawish
,
S.
,
Aldroubi
,
S.
,
Dawoud
,
A.
, and
Abdin
,
W.
,
2023
, “
Airbag Protection and Alerting System for Elderly People
,”
Appl. Sci.
,
13
(
16
), p.
9354
.10.3390/app13169354
30.
Agrawal
,
D. K.
,
Usaha
,
W.
,
Pojprapai
,
S.
, and
Wattanapan
,
P.
,
2023
, “
Fall Risk Prediction Using Wireless Sensor Insoles With Machine Learning
,”
IEEE Access
,
11
, pp.
23119
23126
.10.1109/ACCESS.2023.3252886
31.
Siviy
,
C.
,
Baker
,
L. M.
,
Quinlivan
,
B. T.
,
Porciuncula
,
F.
,
Swaminathan
,
K.
,
Awad
,
L. N.
, and
Walsh
,
C. J.
,
2022
, “
Opportunities and Challenges in the Development of Exoskeletons for Locomotor Assistance
,”
Nat. Biomed. Eng.
,
7
(
4
), pp.
456
472
.10.1038/s41551-022-00984-1
32.
Kohei
,
M.
,
Rieko
,
Y.
, and
Toshihiko
,
S.
,
2021
, “
Orthosis With a Controllable Plantar Height for Fall Prevention Using a Compact Magnetorheological Fluid Brake
,”
J. Intell. Mater. Sys. Struct.
, 33(7), pp.
928
941
.10.1177/1045389X211038710
33.
Rieko
,
Y.
,
Sho
,
I.
,
Masashi
,
K.
, and
Toshihiko
,
S.
,
2022
, “
Effectiveness of an Intelligent Foot Orthosis in Lateral Fall Prevention
,”
ASME J. Eng. Sci. Med. Diag. Ther.
,
5
(
4
), p.
401009
.10.1115/1.4055040
34.
Shiraishi
,
T.
,
Sakuma
,
T.
, and
Morishita
,
S.
,
2003
, “
Design and Performance Verification of Variable Dampers Using MR Fluid
,”
ASME
Paper No. IMECE2003-41346.10.1115/IMECE2003-41346
35.
Shiraishi
,
T.
, and
Morishita
,
S.
,
2004
, “
Measurements of Typical Characteristics of MR Fluids and Their Application to Design of MR Devices Considering Working Modes
,”
Trans. Jpn. Soc. Mech. Eng. Ser. C
,
70
(
696
), pp.
2308
2314
.10.1299/kikaic.70.2308
36.
Rieko Yamamoto
,
K. M.
, and
Shiraishi
,
T.
,
2021
, “
A Feasibility Study of an Intelligent Fall Prevention System: A Sideways Fall Dynamic Model and the Effect of Lateral Insole
,”
World Physiotherapy Congress
, Dubai, UAE, Apr.
8
10
.
37.
Pacific Supply Co, Ltd.
, 2023, “
Gait Solution
,” accessed Nov. 28 2023, https://www.p-supply.co.jp/data/files/00001157-1.pdf
38.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
Hoboken, NJ
.
39.
Murray
,
M. P.
,
Kory
,
R. C.
, and
Clarkson
,
B. H.
,
1969
, “
Walking Patterns in Healthy Old Men
,”
J. Gerontol.
,
24
(
2
), pp.
169
178
.10.1093/geronj/24.2.169
40.
Kondoh
,
S.
,
Araki
,
S.
, and
Kaji
,
K.
,
1995
, “
Relationship Among Walking Speed, Stride Length, and Cadence in Hemiplegic Patients
,”
Rigakuryoho Kagaku
,
10
(
1
), pp.
11
14
.10.1589/rika.10.11
41.
Sekiya
,
N.
,
1996
, “
The Invariant Relationship Between Step Length and Step Rate During Free Walking
,”
J. Hum. Mov. Stud.
,
30
, pp.
241
257
.https://cir.nii.ac.jp/crid/1570572700080767744
42.
Chen
,
C.-J.
, and
Chou
,
L.-S.
,
2010
, “
Center of Mass Position Relative to the Ankle During Walking: A Clinically Feasible Detection Method for Gait Imbalance
,”
Gait Posture
,
31
(
3
), pp.
391
393
.10.1016/j.gaitpost.2009.11.010
43.
Murayama
,
M.
, and
Yamamoto
,
S.
,
2020
, “
Gait and Muscle Activity Changes in Patients in the Recovery Phase of Stroke With Continuous Use of Ankle–Foot Orthosis With Plantarflexion Resistance
,”
Prog. Rehabil. Med.
,
5
, p.
20200021
.10.2490/prm.20200021
44.
Lee
,
D. K.
,
Kim
,
J. S.
,
Kim
,
T. H.
, and
Oh
,
J. S.
,
2015
, “
Comparison of the Electromyographic Activity of the Tibialis Anterior and Gastrocnemius in Stroke Patients and Healthy Subjects During Squat Exercise
,”
J. Phys. Ther. Sci.
,
27
(
1
), pp.
247
249
.10.1589/jpts.27.247
45.
Takeuchi
,
Y.
,
2002
, “
Effect of Stimulus on Mechanical Sensory Receptors of Foot Parts on Shift Area of the Center of Foot Pressure
,”
Phys. Ther. Jpn.
,
29
(
7
), pp.
250
254
.
46.
Morioka
,
S.
,
Hiyamizu
,
M.
,
Fukumoto
,
T.
,
Kataoka
,
Y.
, and
Yagi
,
F.
,
2009
, “
Effects of Plantar Hardness Discrimination Training on Standing Postural Balance in the Elderly: A Randomized Controlled Trial
,”
Clin. Rehabil.
,
23
(
6
), pp.
483
491
.10.1177/0269215508101731
47.
Morioka
,
S.
,
Fujita
,
H.
,
Hiyamizu
,
M.
,
Maeoka
,
H.
, and
Matsuo
,
A.
,
2011
, “
Effects of Plantar Perception Training on Standing Posture Balance in the Old and the Very Old Living in Nursing Facilities: A Randomized Controlled Trial
,”
Clin. Rehabil.
,
25
(
11
), pp.
1011
1020
.10.1177/0269215510395792
48.
Shumway-Cook Pt
,
A.
,
Fapta
,
P.
,
Woollacott
,
M. H.
,
Rachwani
,
J.
, and
Santamaria
,
V.
,
2023
,
Motor Control: Translating Research Into Clinical Practice
, 6th ed.,
Lippincott Connect
,
Philadelphia, PA
.
49.
SENIAM
, 2022, “
The SENIAM Project
,” SENIAM, Enschede, The Netherlands, accessed Feb. 1, 2022, http://www.seniam.org/
You do not currently have access to this content.