Abstract

For individuals with infectious diseases, early and accurate diagnosis is critical. A rapid diagnosis allows for prompt and effective treatment and increases the chance of a full recovery without complications. Additionally, when containing a wide-scale infectious disease outbreak, circumstances are significantly improved by the ability to test the populace frequently, swiftly, and affordably. Regarding specificity and sensitivity, nucleic acid amplification tests (NAAT) are one of the best options for diagnosing infectious diseases. Historically, polymerase chain reaction (PCR) has been used, but complex thermocycling and complicated PCR protocols have often limited PCR to clinical settings. Due to increased simplicity, the isothermal NAAT recombinase polymerase amplification (RPA) has the potential to deliver reliable Point-of-Care (POC) diagnostics in low-resource settings. When designing POC devices for isothermal NAATs, creating isothermal temperature conditions is perhaps the most significant challenge. This work presents a flexible and robust device capable of incubating 3 RPA reactions for simultaneous amplification in conditions conducive to POC testing. The device costs ∼$60 USD to construct and is easy to assemble. A battery-powered polyimide thin-film resistive heater provides energy, and the device only requires power for a fraction of the total incubation time. The device uses a phase change material (PCM) to regulate temperature to avoid the complexity of a microcontroller. RPA reactions were successfully incubated for 30 min using the device.

References

1.
Hwang
,
H.
,
Hwang
,
B.-Y.
, and
Bueno
,
J.
,
2018
, “
Biomarkers in Infectious Diseases
,”
Dis. Markers
,
2018
, p.
8509127
.10.1155/2018/8509127
2.
Ritchie
,
H.
, and
Roser
,
M.
,
2018
,
Causes of Death
,
Our World Data
, Oxford, UK.
3.
Chen
,
H.
,
Liu
,
K.
,
Li
,
Z.
, and
Wang
,
P.
,
2019
, “
Point of Care Testing for Infectious Diseases
,”
Clin. Chim. Acta Int. J. Clin. Chem.
,
493
, pp.
138
147
.10.1016/j.cca.2019.03.008
4.
World Health Organization
,
2020
, “
The Top 10 Causes of Death
,” World Health Organization, Geneva, Switzerland, accessed May 10, 2021, https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
5.
Suea-Ngam
,
A.
,
Bezinge
,
L.
,
Mateescu
,
B.
,
Howes
,
P. D.
,
deMello
,
A. J.
, and
Richards
,
D. A.
,
2020
, “
Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving Toward the Point-of-Care
,”
ACS Sens.
,
5
(
9
), pp.
2701
2723
.10.1021/acssensors.0c01488
6.
World Health Organization, 2022, “
WHO Coronavirus (COVID-19) Dashboard
,” World Health Organization, Geneva, Switzerland, accessed July 20, 2022, https://covid19.who.int
7.
Yager
,
P.
,
Domingo
,
G. J.
, and
Gerdes
,
J.
,
2008
, “
Point-of-Care Diagnostics for Global Health
,”
Annu. Rev. Biomed. Eng.
,
10
(
1
), pp.
107
144
.10.1146/annurev.bioeng.10.061807.160524
8.
Samuel
,
L.
,
2020
, “
Point-of-Care Testing in Microbiology
,”
Clin. Lab. Med.
,
40
(
4
), pp.
483
494
.10.1016/j.cll.2020.08.006
9.
Karaivanov
,
A.
,
Lu
,
S. E.
,
Shigeoka
,
H.
,
Chen
,
C.
, and
Pamplona
,
S.
,
2021
, “
Face Masks, Public Policies and Slowing the Spread of COVID-19: Evidence From Canada
,”
J. Health Econ.
,
78
, p.
102475
.10.1016/j.jhealeco.2021.102475
10.
Rutayisire
,
E.
,
Nkundimana
,
G.
,
Mitonga
,
H. K.
,
Boye
,
A.
, and
Nikwigize
,
S.
,
2020
, “
What Works and What Does Not Work in Response to COVID-19 Prevention and Control in Africa
,”
Int. J. Infect. Dis.
,
97
, pp.
267
269
.10.1016/j.ijid.2020.06.024
11.
Hansen
,
G. T.
,
2020
, “
Point-of-Care Testing in Microbiology: A Mechanism for Improving Patient Outcomes
,”
Clin. Chem.
,
66
(
1
), pp.
124
137
.10.1373/clinchem.2019.304782
12.
Niezen
,
G.
,
Eslambolchilar
,
P.
, and
Thimbleby
,
H.
,
2016
, “
Open-Source Hardware for Medical Devices
,”
BMJ Innov.
,
2
(
2
), pp.
78
83
.10.1136/bmjinnov-2015-000080
13.
Wu
,
G.
, and
Zaman
,
M. H.
,
2012
, “
Low-Cost Tools for Diagnosing and Monitoring HIV Infection in Low-Resource Settings
,”
Bull. World Health Organ.
,
90
(
12
), pp.
914
920
.10.2471/BLT.12.102780
14.
Drain
,
P. K.
,
Hyle
,
E. P.
,
Noubary
,
F.
,
Freedberg
,
K. A.
,
Wilson
,
D.
,
Bishai
,
W.
,
Rodriguez
,
W.
, and
Bassett
,
I. V.
,
2014
, “
Evaluating Diagnostic Point-of-Care Tests in Resource-Limited Settings
,”
Lancet Infect. Dis.
,
14
(
3
), pp.
239
249
.10.1016/S1473-3099(13)70250-0
15.
Mauk
,
M. G.
,
Song
,
J.
,
Liu
,
C.
, and
Bau
,
H. H.
,
2018
, “
Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests
,”
Biosensor
,
8
(
1
), p.
17
.10.3390/bios8010017
16.
Obande
,
G. A.
, and
Banga Singh
,
K. K.
,
2020
, “
Current and Future Perspectives on Isothermal Nucleic Acid Amplification Technologies for Diagnosing Infections
,”
Infect. Drug Resist.
,
13
, pp.
455
483
.10.2147/IDR.S217571
17.
Maffert
,
P.
,
Reverchon
,
S.
,
Nasser
,
W.
,
Rozand
,
C.
, and
Abaibou
,
H.
,
2017
, “
New Nucleic Acid Testing Devices to Diagnose Infectious Diseases in Resource-Limited Settings
,”
Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol.
,
36
(
10
), pp.
1717
1731
.10.1007/s10096-017-3013-9
18.
Craw
,
P.
, and
Balachandran
,
W.
,
2012
, “
Isothermal Nucleic Acid Amplification Technologies for Point-of-Care Diagnostics: A Critical Review
,”
Lab. Chip
,
12
(
14
), pp.
2469
2486
.10.1039/c2lc40100b
19.
Miralles
,
V.
,
Huerre
,
A.
,
Malloggi
,
F.
, and
Jullien
,
M.-C.
,
2013
, “
A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications
,”
Diagnostics
,
3
(
1
), pp.
33
67
.10.3390/diagnostics3010033
20.
Li
,
J.
,
Macdonald
,
J.
, and
Stetten
,
F. V.
,
2019
, “
Review: A Comprehensive Summary of a Decade Development of the Recombinase Polymerase Amplification
,”
Analyst
,
144
(
1
), pp.
31
67
.10.1039/C8AN01621F
21.
Lobato
,
I. M.
, and
O'Sullivan
,
C. K.
,
2018
, “
Recombinase Polymerase Amplification: Basics, Applications and Recent Advances
,”
TrAC Trends Anal. Chem.
,
98
, pp.
19
35
.10.1016/j.trac.2017.10.015
22.
Daher
,
R. K.
,
Stewart
,
G.
,
Boissinot
,
M.
, and
Bergeron
,
M. G.
,
2016
, “
Recombinase Polymerase Amplification for Diagnostic Applications
,”
Clin. Chem.
,
62
(
7
), pp.
947
958
.10.1373/clinchem.2015.245829
23.
Qiu
,
X.
,
Zhang
,
S.
,
Xiang
,
F.
,
Wu
,
D.
,
Guo
,
M.
,
Ge
,
S.
,
Li
,
K.
,
Ye
,
X.
,
Xia
,
N.
, and
Qian
,
S.
,
2017
, “
Instrument-Free Point-of-Care Molecular Diagnosis of H1N1 Based on Microfluidic Convective PCR
,”
Sens. Actuators B Chem.
,
243
, pp.
738
744
.10.1016/j.snb.2016.12.058
24.
Abdullahi
,
U. F.
,
Naim
,
R.
,
Taib
,
W. R. W.
,
Saleh
,
A.
,
Muazu
,
A.
,
Baig
,
S. A.
, and
Baig
,
A. A.
,
2015
, “
Loop-Mediated Isothermal Amplification (LAMP), An Innovation in Gene Amplification: Bridging the Gap in Molecular Diagnostics; A Review
,”
Indian J. Sci. Technol.
,
8
(
17
), pp.
1
12
.10.17485/ijst/2015/v8i17/55767
25.
Piepenburg
,
O.
,
Williams
,
C. H.
,
Stemple
,
D. L.
, and
Armes
,
N. A.
,
2006
, “
DNA Detection Using Recombination Proteins
,”
PLoS Biol.
,
4
(
7
), p.
e204
.10.1371/journal.pbio.0040204
26.
Buser
,
J. R.
,
Diesburg
,
S.
,
Singleton
,
J.
,
Guelig
,
D.
,
Bishop
,
J. D.
,
Zentner
,
C.
,
Burton
,
R.
,
LaBarre
,
P.
,
Yager
,
P.
, and
Weigl
,
B. H.
,
2015
, “
Precision Chemical Heating for Diagnostic Devices
,”
Lab. Chip
,
15
(
23
), pp.
4423
4432
.10.1039/C5LC01053E
27.
Huang
,
S.
,
Do
,
J.
,
Mahalanabis
,
M.
,
Fan
,
A.
,
Zhao
,
L.
,
Jepeal
,
L.
,
Singh
,
S. K.
, and
Klapperich
,
C. M.
,
2013
, “
Low Cost Extraction and Isothermal Amplification of DNA for Infectious Diarrhea Diagnosis
,”
PLoS One
,
8
(
3
), p.
e60059
.10.1371/journal.pone.0060059
28.
Goertz
,
J. P.
,
Colvin
,
K. M.
,
Lippe
,
A. B.
,
Daristotle
,
J. L.
,
Kofinas
,
P.
, and
White
,
I. M.
,
2018
, “
Multistage Chemical Heating for Instrument-Free Biosensing
,”
ACS Appl. Mater. Interfaces
,
10
(
39
), pp.
33043
33048
.10.1021/acsami.8b11611
29.
Liao
,
S.-C.
,
Peng
,
J.
,
Mauk
,
M. G.
,
Awasthi
,
S.
,
Song
,
J.
,
Friedman
,
H.
,
Bau
,
H. H.
, and
Liu
,
C.
,
2016
, “
Smart Cup: A Minimally-Instrumented, Smartphone-Based Point-of-Care Molecular Diagnostic Device
,”
Sens. Actuators B Chem.
,
229
, pp.
232
238
.10.1016/j.snb.2016.01.073
30.
Linnes
,
J. C.
,
Fan
,
A.
,
Rodriguez
,
N. M.
,
Lemieux
,
B.
,
Kong
,
H.
, and
Klapperich
,
C. M.
,
2014
, “
Paper-Based Molecular Diagnostic for Chlamydia Trachomatis
,”
RSC Adv.
,
4
(
80
), pp.
42245
42251
.10.1039/C4RA07911F
31.
Zhang
,
Y.
,
Zhang
,
L.
,
Sun
,
J.
,
Liu
,
Y.
,
Ma
,
X.
,
Cui
,
S.
,
Ma
,
L.
,
Xi
,
J. J.
, and
Jiang
,
X.
,
2014
, “
Point-of-Care Multiplexed Assays of Nucleic Acids Using Microcapillary-Based Loop-Mediated Isothermal Amplification
,”
Anal. Chem.
,
86
(
14
), pp.
7057
7062
.10.1021/ac5014332
32.
Kenisarin
,
M. M.
,
2014
, “
Thermophysical Properties of Some Organic Phase Change Materials for Latent Heat Storage. A Review
,”
Sol. Energy
,
107
, pp.
553
575
.10.1016/j.solener.2014.05.001
33.
Singleton
,
J.
,
Zentner
,
C.
,
Buser
,
J.
,
Yager
,
P.
,
LaBarre
,
P.
, and
Weigl
,
B. H.
,
2013
, “
Instrument-Free Exothermic Heating With Phase Change Temperature Control for Paper Microfluidic Devices
,”
Proc. SPIE
,
8615
, p.
86150R
.10.1117/12.2005928
34.
Curtis
,
K. A.
,
Rudolph
,
D. L.
,
Morrison
,
D.
,
Guelig
,
D.
,
Diesburg
,
S.
,
McAdams
,
D.
,
Burton
,
R. A.
,
LaBarre
,
P.
, and
Owen
,
M.
,
2016
, “
Single-Use, Electricity-Free Amplification Device for Detection of HIV-1
,”
J. Virol. Methods
,
237
, pp.
132
137
.10.1016/j.jviromet.2016.09.007
35.
Sema
,
M.
,
Alemu
,
A.
,
Bayih
,
A. G.
,
Getie
,
S.
,
Getnet
,
G.
,
Guelig
,
D.
,
Burton
,
R.
,
LaBarre
,
P.
, and
Pillai
,
D. R.
,
2015
, “
Evaluation of Non-Instrumented Nucleic Acid Amplification by Loop-Mediated Isothermal Amplification (NINA-LAMP) for the Diagnosis of Malaria in Northwest Ethiopia
,”
Malar. J.
,
14
(
1
), p.
44
.10.1186/s12936-015-0559-9
36.
Singleton
,
J.
,
Osborn
,
J. L.
,
Lillis
,
L.
,
Hawkins
,
K.
,
Guelig
,
D.
,
Price
,
W.
,
Johns
,
R.
,
Ebels
,
K.
,
Boyle
,
D.
,
Weigl
,
B.
, and
LaBarre
,
P.
,
2014
, “
Electricity-Free Amplification and Detection for Molecular Point-of-Care Diagnosis of HIV-1
,”
PLoS One
,
9
(
11
), p.
e113693
.10.1371/journal.pone.0113693
37.
Song
,
J.
,
Mauk
,
M. G.
,
Hackett
,
B. A.
,
Cherry
,
S.
,
Bau
,
H. H.
, and
Liu
,
C.
,
2016
, “
Instrument-Free Point-of-Care Molecular Detection of Zika Virus
,”
Anal. Chem.
,
88
(
14
), pp.
7289
7294
.10.1021/acs.analchem.6b01632
38.
Vloemans
,
D.
,
Dal Dosso
,
F.
,
Lopez
,
C.
,
Macdonald
,
J.
, and
Lammertyn
,
J.
,
2019
, “
Phase Change Materials as an Enabler for Malaria Detection in Lowresource Settings
,”
23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences
, Basel, Switzerland, Oct.
27
31
.https://research.usc.edu.au/esploro/outputs/99489007602621
39.
Vloemans
,
D.
,
Dal Dosso
,
F.
,
Verboven
,
P.
,
Nicolai
,
B.
, and
Lammertyn
,
J.
,
2020
, “
Exploiting Phase Change Materials in Tunable Passive Heating System for Low-Resource Point-of-Care Diagnostics
,”
Appl. Therm. Eng.
,
173
, p.
115269
.10.1016/j.applthermaleng.2020.115269
40.
Pardy
,
T.
,
Tulp
,
I.
,
Kremer
,
C.
,
Rang
,
T.
, and
Stewart
,
R.
,
2017
, “
Integrated Self-Regulating Resistive Heating for Isothermal Nucleic Acid Amplification Tests (NAAT) in Lab-on-a-Chip (LoC) Devices
,”
PLoS One
,
12
(
12
), p.
e0189968
.10.1371/journal.pone.0189968
41.
Liu
,
C.
,
Mauk
,
M. G.
,
Hart
,
R.
,
Bonizzoni
,
M.
,
Yan
,
G.
, and
Bau
,
H. H.
,
2012
, “
A Low-Cost Microfluidic Chip for Rapid Genotyping of Malaria-Transmitting Mosquitoes
,”
Plos One
,
7
(
8
), p.
e42222
.10.1371/journal.pone.0042222
42.
Pardy
,
T.
,
Rang
,
T.
, and
Tulp
,
I.
,
2017
, “
Development of Temperature Control Solutions for Non-Instrumented Nucleic Acid Amplification Tests (NINAAT)
,”
Micromachines
,
8
(
6
), p.
180
.10.3390/mi8060180
43.
Veltkamp
,
H.-W.
,
Akegawa Monteiro
,
F.
,
Sanders
,
R.
,
Wiegerink
,
R.
, and
Lötters
,
J.
,
2020
, “
Disposable DNA Amplification Chips With Integrated Low-Cost Heaters
,”
Micromachines
,
11
(
3
), p.
238
.10.3390/mi11030238
44.
Pardy
,
T.
,
Sink
,
H.
,
Koel
,
A.
, and
Rang
,
T.
,
2019
, “
Development of a Low-Cost, Wireless Smart Thermostat for Isothermal DNA Amplification in Lab-On-A-Chip Devices
,”
Micromachines
,
10
(
7
), p.
437
.10.3390/mi10070437
45.
Myers
,
F. B.
,
Henrikson
,
R. H.
,
Bone
,
J.
, and
Lee
,
L. P.
,
2013
, “
A Handheld Point-of-Care Genomic Diagnostic System
,”
PLoS One
,
8
(
8
), p.
e70266
.10.1371/journal.pone.0070266
46.
Streit
,
P.
,
Nestler
,
J.
,
Shaporin
,
A.
,
Graunitz
,
J.
, and
Otto
,
T.
,
2018
, “
Design Methodology and Results Evaluation of a Heating Functionality in Modular Lab-on-Chip Systems
,”
J. Micromech. Microeng.
,
28
(
6
), p.
064001
.10.1088/1361-6439/aab0ca
47.
Stedtfeld
,
R. D.
,
Tourlousse
,
D. M.
,
Seyrig
,
G.
,
Stedtfeld
,
T. M.
,
Kronlein
,
M.
,
Price
,
S.
,
Ahmad
,
F.
,
Gulari
,
E.
,
Tiedje
,
J. M.
, and
Hashsham
,
S. A.
,
2012
, “
Gene-Z: A Device for Point of Care Genetic Testing Using a Smartphone
,”
Lab. Chip
,
12
(
8
), pp.
1454
1462
.10.1039/c2lc21226a
48.
Velders
,
A. H.
,
Schoen
,
C.
, and
Saggiomo
,
V.
,
2018
, “
Loop-Mediated Isothermal Amplification (LAMP) Shield for Arduino DNA Detection
,”
BMC Res. Notes
,
11
(
1
), p.
93
.10.1186/s13104-018-3197-9
49.
Schultz
,
A. L.
,
2021
,
A Portable Point-of-Care Device Using Joule Heating and Latent Energy Storage for the Temperature Regulation of Isothermal Nucleic Acid Amplification Tests
,
University of Arkansas
, Fayetteville, AR.
You do not currently have access to this content.