Abstract

With the population of people affected by lower limb disability and physical impairments continuing to grow, engineers in response have begun to develop exoskeletons designed to assist and rehabilitate those in need. While there have been great strides and advancements in the development of exoskeletons, many of them are still too cumbersome, heavy, and expensive for most people. The project described in this paper aims to design and manufacture a wearable robotic knee exoskeleton that helps solve some of the drawbacks that exoskeletons have today. The exoskeleton is designed with lightweight and durable three-dimensional (3D)-printed PETG, TPU, and PLA components combined with soft, flexible, and wearable materials to achieve improved human–robot interaction while providing support when bending and extending the knee joint. The three main assemblies designed in this project were a 3D-printed semirigid knee chain, a 3D-printed flexible shin brace, and a motor actuator assembly mounted on a carbon fiber back plate. The semirigid knee chain is actuated using a Bowden cable which allows the heavy motor to be relocated onto the user's back. solidworks topology optimization and finite element analysis (FEA) were used to reduce weight while keeping the overall strength of the chain and ensuring the safety factor of 2. The exoskeleton was observed to be able to withstand applied torques of up to 29 N·m during the walking functionality test. This exoskeleton is also designed to be integrated into a larger hip exoskeleton system.

References

1.
Zimbelman
,
J. L.
,
Juraschek
,
S. P.
,
Zhang
,
X.
, and
Lin
,
V. W.
,
2010
, “
Physical Therapy Workforce in the United States: Forecasting Nationwide Shortages
,”
Pm R
,
2
(
11
), pp.
1021
1029
.10.1016/j.pmrj.2010.06.015
2.
CDC
,
2022
, “
Disability and Health Data System (DHDS)
,”
Centers Disease Control Prevention, CDC
, Atlanta, GA, accessed Oct. 20, 2022, https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
3.
Shi
,
D.
,
Zhang
,
W.
,
Zhang
,
W.
, and
Ding
,
X.
,
2019
, “
A Review on Lower Limb Rehabilitation Exoskeleton Robots
,”
Chin. J. Mech. Eng.
,
32
(
1
), p.
74
.10.1186/s10033-019-0389-8
4.
Li
,
N.
,
Yang
,
T.
,
Yu
,
P.
,
Chang
,
J.
,
Zhao
,
L.
,
Zhao
,
X.
,
Elhajj
,
I. H.
,
Xi
,
N.
, and
Liu
,
L.
,
2018
, “
Bio-Inspired Upper Limb Soft Exoskeleton to Reduce Stroke-Induced Complications
,”
Bioinspir. Biomim.
,
13
(
6
), p.
066001
.10.1088/1748-3190/aad8d4
5.
Kim
,
T.
,
Jeong
,
M.
, and
Kong
,
K.
,
2022
, “
Bioinspired Knee Joint of a Lower Limb Exoskeleton for Misalignment Reduction
,”
IEEE/ASME Trans. Mech.
,
27
(
3
), pp.
1223
1232
.10.1109/TMECH.2021.3099815
6.
Xiloyannis
,
M.
,
Alicea
,
R.
,
Georgarakis
,
A.-M.
,
Haufe
,
F. L.
,
Wolf
,
P.
,
Masia
,
L.
, and
Riener
,
R.
,
2022
, “
Soft Robotic Suits: State of the Art, Core Technologies, and Open Challenges
,”
IEEE Trans. Rob.
,
38
(
3
), pp.
1343
1362
.10.1109/TRO.2021.3084466
7.
Oghogho
,
M.
,
Sharifi
,
M.
,
Vukadin
,
M.
,
Chin
,
C.
,
Mushahwar
,
V. K.
, and
Tavakoli
,
M.
,
2022
, “
Deep Reinforcement Learning for EMG-Based Control of Assistance Level in Upper-Limb Exoskeletons
,” International Symposium on Medical Robotics (
ISMR
) Atlanta, GA, Apr. 13–15, pp.
1
7
.10.1109/ISMR48347.2022.9807562
8.
Chen
,
T.
,
Casas
,
R.
, and
Lum
,
P. S.
,
2019
, “
An Elbow Exoskeleton for Upper Limb Rehabilitation With Series Elastic Actuator and Cable-Driven Differential
,”
IEEE Trans. Rob.
,
35
(
6
), pp.
1464
1474
.10.1109/TRO.2019.2930915
9.
Wei
,
W.
,
Qu
,
Z.
,
Wang
,
W.
,
Zhang
,
P.
, and
Hao
,
F.
,
2018
, “
Design on the Bowden Cable-Driven Upper Limb Soft Exoskeleton
,”
Appl. Bionics Biomech.
,
2018
, pp.
1
9
.10.1155/2018/1925694
10.
Sharifi
,
M.
,
Mehr
,
J. K.
,
Mushahwar
,
V. K.
, and
Tavakoli
,
M.
,
2021
, “
Adaptive CPG-Based Gait Planning With Learning-Based Torque Estimation and Control for Exoskeletons
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
8261
8268
.10.1109/LRA.2021.3105996
11.
Sharifi
,
M.
,
Mehr
,
J. K.
,
Mushahwar
,
V. K.
, and
Tavakoli
,
M.
,
2022
, “
Autonomous Locomotion Trajectory Shaping and Nonlinear Control for Lower Limb Exoskeletons
,”
IEEE/ASME Trans. Mech.
,
27
(
2
), pp.
645
655
.10.1109/TMECH.2022.3156168
12.
Céspedes
,
N.
,
Múnera
,
M.
,
Gómez
,
C.
, and
Cifuentes
,
C. A.
,
2020
, “
Social Human-Robot Interaction for Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
28
(
6
), pp.
1299
1307
.10.1109/TNSRE.2020.2987428
13.
Robertson
,
M. A.
,
Sadeghi
,
H.
,
Florez
,
J. M.
, and
Paik
,
J.
,
2017
, “
Soft Pneumatic Actuator Fascicles for High Force and Reliability
,”
Soft Robot
,
4
(
1
), pp.
23
32
.10.1089/soro.2016.0029
14.
Henderson
,
G. C.
, and
Ueda
,
J.
,
2012
, “
Pneumatically-Powered Robotic Exoskeleton to Exercise Specific Lower Extremity Muscle Groups in Humans
,” Fourth IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (
BioRob
), Rome, Italy, June 24–27, pp.
1506
1511
.10.1109/BioRob.2012.6290904
15.
Veneman
,
J.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
,
van der Helm
,
F.
, and
van der Kooij
,
H.
,
2005
, “
Design of a Series Elastic- and Bowden Cable-Based Actuation System for Use as Torque-Actuator in Exoskeleton-Type Training
,”
Ninth International Conference on Rehabilitation Robotics, ICORR
, Chicago, IL, June 28–July 1, pp.
496
499
.10.1109/ICORR.2005.1501150
16.
Zhang
,
Y.
,
Ajoudani
,
A.
, and
Tsagarakis
,
N. G.
,
2021
, “
Exo-Muscle: A Semi-Rigid Assistive Device for the Knee
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
8514
8521
.10.1109/LRA.2021.3100609
17.
Sheridan
,
T.
,
2016
, “
Human-Robot Interaction: Status and Challenges
,”
Human Factors
,
58
(
4
), pp.
525
532
.10.1177/0018720816644364
18.
Kosuge
,
K.
, and
Hirata
,
Y.
,
2004
, “
Human-Robot Interaction
,”
IEEE International Conference on Robotics and Biomimetics
, Shenyang, China, Aug. 22–26, pp.
8
11
.10.1109/ROBIO.2004.1521743
19.
Abbot
,
D.
,
Kallon
,
D.
,
Anghel
,
C.
, and
Dube
,
P.
,
2019
, “
Finite Element Analysis of 3D Printed Model Via Compression Tests
,”
Procedia Manuf.
,
35
, pp.
164
173
.10.1016/j.promfg.2019.06.001
20.
Lencioni
,
T.
,
Carpinella
,
I.
,
Rabuffetti
,
M.
,
Marzegan
,
A.
, and
Ferrarin
,
M.
,
2019
, “
Human Kinematic, Kinetic and EMG Data During Different Walking and Stair Ascending and Descending Tasks
,”
Sci. Data
,
6
(
1
), p.
309
.10.1038/s41597-019-0323-z
You do not currently have access to this content.