Abstract

An approach is presented for calculation verification of geometry-based and voxel-based finite element modeling techniques used for biological hard tissue. The purpose of this study is to offer a controlled comparison of geometry- and voxel-based finite element modeling in terms of the convergence (i.e., discretization based on mesh size and/or element order), accuracy, and computational speed in modeling biological hard tissues. All of the geometry-based numerical test models have hp-converged at an acceptable mesh seed length of 0.6 mm, while not all voxel-based models exhibited convergence and no voxel models p-converged. Converged geometry-based meshes were found to offer accurate solutions of the deformed model shape and equivalent vertebral stiffness, while voxel-based models were 6.35% ± 0.84% less stiff (p < 0.0001) and deformed 6.79% ± 0.96% more (p < 0.0001). Based on the controlled verification study results, the voxel-based models must be confirmed with local values and validation of quantities of interest to ensure accurate finite element model predictions.

References

1.
Oberkampf
,
W. L.
, and
Trucano
,
T. G.
,
2002
, “
Verification and Validation in Computational Fluid Dynamics
,”
Prog. Aerosp. Sci.
,
38
(
3
), pp.
209
272
.10.1016/S0376-0421(02)00005-2
2.
Guler
,
I.
,
Aycock
,
K. I.
, and
Rebelo
,
N.
,
2022
, “
Two Calculation Verification Metrics Used in the Medical Device Industry: Revisiting the Limitations of Fractional Change
,”
ASME J. Verif. Valid. Uncertainity Quantif.
,
7
(
3
), p.
031004
.10.1115/1.4055506
3.
Lipscomb
,
K. E.
, and
Sarigul-Klijn
,
N.
,
2013
, “
Simulation of the Whole Human Spine Using Finite Elements: P & H Version Convergence
,”
ASME
Paper No. SBC2013-14298. 10.1115/SBC2013-14298
4.
Boyd
,
S. K.
, and
Müller
,
R.
,
2006
, “
Smooth Surface Meshing for Automated Finite Element Model Generation From 3D Image Data
,”
J. Biomech.
,
39
(
7
), pp.
1287
1295
.10.1016/j.jbiomech.2005.03.006
5.
Bardyn
,
T.
,
Reyes
,
M.
,
Larrea
,
X.
, and
Büchler
,
P.
,
2010
, “
Influence of Smoothing on Voxel-Based Mesh Accuracy in Micro-Finite Element
,”
Computational Biomechanics for Medicine
,
K.
Miller
, and
P. M. F.
Nielsen
, eds,
Springer
,
New York
, pp.
85
93
.
6.
Lian
,
W.
,
Legrain
,
G.
, and
Cartraud
,
P.
,
2013
, “
Image-Based Computational Homogenization and Localization: Comparison Between X-FEM/Level Set and Voxel-Based Approaches
,”
Comput. Mech.
,
51
(
3
), pp.
279
293
.10.1007/s00466-012-0723-9
7.
Lipscomb
,
K. E.
,
2014
, “
Biomechanical Changes in the Whole Human Spine Due to Intervertebral Disc Degeneration and Fusion
,”
Ph.D. dissertation
,
University of California
,
Davis, CA
.https://www.proquest.com/openview/43c99a08b91b262f3fbf29556493306e/1?pqorigsite=gscholar&cbl=18750
8.
Doughty
,
E. S.
,
2011
, “
Quantification of Spinal Instability for Evaluation of Experimental Models
,”
M.S. thesis
,
University of California
,
Davis, CA
.https://www.proquest.com/openview/d323a57c977e7faefbfbe8ddc1727c3b/1.pdf?pqorigsite=gscholar&cbl=18750
9.
Diaz-Silva
,
R. A.
, and
Sarigul-Klijn
,
N.
,
2008
, “
Development and Validation of a High Fidelity 3-D Computational Spine Model That Incorporates Spatial Material Density Variations
,”
ASME
Paper No. IMECE2008-68611. 10.1115/IMECE2008-68611
10.
Lu
,
Y.
,
2014
, “
Influence of the Specimen Scan Condition on the Finite Element Voxel Model of Human Vertebral Cancellous Bone
,”
Comput. Methods Biomech. Biomed. Eng. Imaging Visualization
,
3
(
3
), pp.
1
5
.10.1080/21681163.2014.947385
11.
Tang
,
C. Y.
,
Tsui
,
C. P.
,
Tang
,
Y. M.
,
Wei
,
L.
,
Wong
,
C. T.
,
Lam
,
K. W.
,
Ip
,
W. Y.
, et al.,
2014
, “
Voxel-Based Approach to Generate Entire Human Metacarpal Bone With Microscopic Architecture for Finite Element Analysis
,”
Biomed. Mater. Eng.
,
24
(
2
), pp.
1469
1484
.10.3233/BME-130951
12.
Giovannelli
,
L.
,
Ródenas
,
J. J.
,
Navarro-Jiménez
,
J. M.
, and
Tur
,
M.
,
2017
, “
Direct Medical Image-Based Finite Element Modeling for Patient-Specific Simulation of Future Implants
,”
Finite Elem. Anal. Des.
,
136
, pp.
37
57
.10.1016/j.finel.2017.07.010
13.
Esposito
,
L.
,
Bifulco
,
P.
,
Gargiulo
,
P.
, and
Fraldi
,
M.
,
2016
, “
Singularity-Free Finite Element Model of Bone Through Automated Voxel-Based Reconstruction
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
3
), pp.
257
262
.10.1080/10255842.2015.1014347
14.
Shefelbine
,
S. J.
,
Simon
,
U.
,
Claes
,
L.
,
Gold
,
A.
,
Gabet
,
Y.
,
Bab
,
I.
,
Müller
,
R.
, and
Augat
,
P.
,
2005
, “
Prediction of Fracture Callus Mechanical Properties Using micro-CT Images and Voxel-Based Finite Element Analysis
,”
Bone
,
36
(
3
), pp.
480
488
.10.1016/j.bone.2004.11.007
15.
Charlebois
,
M.
,
Chevalier
,
Y.
,
Varga
,
P.
,
Pahr
,
D.
, and
Zysset
,
P. K.
,
2007
, “
A Combined Axial Compression and Flexion Loading Mode to Evaluate Strength of Vertebral Bodies Using a Voxel-Based Finite Element Method
,”
ASBMR 29th Annual Meeting
, Honolulu, HI, Sept. 16–19, pp.
s452
s500
.https://repositum.tuwien.at/handle/20.500.12708/92387
16.
Chevalier
,
Y.
,
Pahr
,
D.
,
Allmer
,
H.
,
Charlebois
,
M.
, and
Zysset
,
P.
,
2007
, “
Validation of a Voxel-Based FE Method for Prediction of the Uniaxial Apparent Modulus of Human Trabecular Bone Using Macroscopic Mechanical Tests and Nanoindentation
,”
J. Biomech.
,
40
(
15
), pp.
3333
3340
.10.1016/j.jbiomech.2007.05.004
17.
Adachi
,
T.
,
Tsubota
,
K. I.
,
Tomita
,
Y.
, and
Scott
,
J. H.
,
2001
, “
Trabecular Surface Remodeling Simulation for Cancellous Bone Using Microstructural Voxel Finite Element Models
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
403
409
.10.1115/1.1392315
18.
Crawford
,
R. P.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
,
2003
, “
Quantitative Computed Tomography-Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions
,”
ASME J. Biomech. Eng.
,
125
(
4
), pp.
434
438
.10.1115/1.1589772
19.
Keyak
,
J. H.
,
Meagher
,
J. M.
,
Skinner
,
H. B.
, and
Mote
,
C. D. J.
,
1990
, “
Automated Three-Dimensional Finite Element Modeling of Bone: A New Method
,”
ASME J. Biomech. Eng.
,
12
(
5
), pp.
389
397
.10.1016/0141-5425(90)90022-F
20.
Guldberg
,
R. E.
,
Hollister
,
S. J.
, and
Charras
,
G. T.
,
1998
, “
The Accuracy of Digital Image-Based Finite Element Models
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
289
295
.10.1115/1.2798314
21.
Viceconti
,
M.
,
Bellingeri
,
L.
,
Cristofolini
,
L.
, and
Toni
,
A.
,
1998
, “
A Comparative Study on Different Methods of Automatic Mesh Generation of Human Femurs
,”
Med. Eng. Phys.
,
20
(
1
), pp.
1
10
.10.1016/S1350-4533(97)00049-0
22.
Townsend
,
M. T.
, and
Sarigul-Klijn
,
N.
,
2016
, “
Long Duration Space Flight Exposed Whole Human Spine: Biomechanical Changes Predictions
,”
AIAA
Paper No. 2016-5358. 10.2514/6.2016-5358
23.
Zhou
,
S. H.
,
McCarthy
,
I. D.
,
McGregor
,
A. H.
,
Coombs
,
R. R. H.
, and
Hughes
,
S. P. F.
,
2000
, “
Geometrical Dimensions of the Lower Lumbar Vertebrae - Analysis of Data From Digitised CT Images
,”
Eur. Spine J.
,
9
(
3
), pp.
242
248
.10.1007/s005860000140
24.
Masharawi
,
Y.
,
Salame
,
K.
,
Mirovsky
,
Y.
,
Peleg
,
S.
,
Dar
,
G.
,
Steinberg
,
N.
, and
Hershkovitz
,
I.
,
2008
, “
Vertebral Body Shape Variation in the Thoracic and Lumbar Spine: Characterization of Its Asymmetry and Wedging
,”
Clin. Anat.
,
21
(
1
), pp.
46
54
.10.1002/ca.20532
25.
Karabekir
,
H. S.
,
Gocmen-Mas
,
N.
,
Edizer
,
M.
,
Ertekin
,
T.
,
Yazici
,
C.
, and
Atamturk
,
D.
,
2011
, “
Lumbar Vertebra Morphometry and Stereological Assessment of Intervertebral Space Volumetry: A Methodological Study
,”
Ann. Anat.
,
193
(
3
), pp.
231
236
.10.1016/j.aanat.2011.01.011
26.
Christiansen
,
B. A.
,
Kopperdahl
,
D. L.
,
Kiel
,
D. P.
,
Keaveny
,
T. M.
, and
Bouxsein
,
M. L.
,
2011
, “
Mechanical Contributions of the Cortical and Trabecular Compartments Contribute to Differences in Age-Related Changes in Vertebral Body Strength in Men and Women Assessed by QCT-Based Finite Element Analysis
,”
J. Bone Miner. Res.
,
26
(
5
), pp.
974
983
.10.1002/jbmr.287
27.
Imai
,
K.
,
Ohnishi
,
I.
,
Bessho
,
M.
, and
Nakamura
,
K.
,
2006
, “
Nonlinear Finite Element Model Predicts Vertebral Bone Strength and Fracture site
,”
Spine
,
31
(
16
), pp.
1789
1794
.10.1097/01.brs.0000225993.57349.df
28.
Lu
,
Y. M.
,
Hutton
,
W. C.
, and
Gharpuray
,
V. M.
,
1996
, “
Can Variations in Intervertebral Disc Height Affect the Mechanical Function of the Disc?
,”
Spine
,
21
(
19
), pp.
2208
2216
.10.1097/00007632-199610010-00006
29.
Schmidt
,
H.
,
Heuer
,
F.
, and
Wilke
,
H. J.
,
2009
, “
Which Axial and Bending Stiffnesses of Posterior Implants Are Required to Design a Flexible Lumbar Stabilization System?
,”
J. Biomech.
,
42
(
1
), pp.
48
54
.10.1016/j.jbiomech.2008.10.005
30.
Edwards
,
W. T.
,
Zheng
,
Y.
,
Ferrara
,
L. A.
, and
Yuan
,
H. A.
,
2001
, “
Structural Features and Thickness of the Vertebral Cortex in the Thoracolumbar Spine
,”
Spine
,
26
(
2
), pp.
218
225
.10.1097/00007632-200101150-00019
31.
Eswaran
,
S. K.
,
Bayraktar
,
H. H.
,
Adams
,
M. F.
,
Gupta
,
A.
,
Hoffmann
,
P. F.
,
Lee
,
D. C.
,
Papadopoulos
,
P.
, and
Keaveny
,
T. M.
,
2007
, “
The Micro-Mechanics of Cortical Shell Removal in the Human Vertebral Body
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
3025
3032
.10.1016/j.cma.2006.06.017
32.
Nawathe
,
S.
,
Nguyen
,
B. P.
,
Barzanian
,
N.
,
Akhlaghpour
,
H.
,
Bouxsein
,
M. L.
, and
Keaveny
,
T. M.
,
2015
, “
Cortical and Trabecular Load Sharing in the Human Vertebral Body
,”
J. Biomech.
,
48
(
5
), pp.
816
822
.10.1016/j.jbiomech.2014.12.022
33.
Tseng
,
Z. J.
, and
Flynn
,
J. J.
,
2015
, “
Convergence Analysis of a Finite Element Skull Model of Herpestes Javanicus (Carnivora, Mammalia): Implications for Robust Comparative Inferences of Biomechanical Function
,”
J. Theory Biol.
,
365
, pp.
112
148
.10.1016/j.jtbi.2014.10.002
34.
Ayturk
,
U. M.
, and
Puttlitz
,
C. M.
,
2011
, “
Parametric Convergence Sensitivity and Validation of a Finite Element Model of the Human Lumbar Spine
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
8
), pp.
695
705
.10.1080/10255842.2010.493517
35.
Crawford
,
R. P.
,
Cann
,
C. E.
, and
Keaveny
,
T. M.
,
2003
, “
Finite Element Models Predict In Vitro Vertebral Body Compressive Strength Better Than Quantitative Computed Tomography
,”
Bone
,
33
(
4
), pp.
744
750
.10.1016/S8756-3282(03)00210-2
36.
Buckley
,
J. M.
,
Loo
,
K.
, and
Motherway
,
J.
,
2007
, “
Comparison of Quantitative Computed Tomography-Based Measures in Predicting Vertebral Compressive Strength
,”
Bone
,
40
(
3
), pp.
767
774
.10.1016/j.bone.2006.10.025
37.
Mills
,
M. J.
, and
Sarigul-Klijn
,
N.
,
2019
, “
Validation of an In Vivo Medical Image-Based Young Human Lumbar Spine Finite Element Model
,”
ASME J. Biomech. Eng.
,
141
(
3
), p.
031003
.10.1115/1.4042183
38.
Townsend
,
M. T.
, and
Sarigul-Klijn
,
N.
,
2018
, “
Human Spaceflight and Space Adaptations: Computational Simulation of Gravitational Unloading on the Spine
,”
Acta Astronaut.
,
145
, pp.
18
27
.10.1016/j.actaastro.2018.01.015
39.
Marks
,
L. W.
, and
Gardner
,
T. N.
,
1993
, “
The Use of Strain Energy as a Convergence Criterion in the Finite Element Modeling of Bone and the Effect of Model Geometry on Stress Convergence
,”
J. Biomed. Eng.
,
15
(
6
), pp.
474
476
.10.1016/0141-5425(93)90061-3
You do not currently have access to this content.