Abstract

Analysis of flow diverting intracranial aneurysm repair devices has traditionally focused on reducing intrasaccular blood flow velocity and aneurysm wall shear stress (WSS) as the primary metrics for improved perceived device performance. However, the interpretation of this data has been debated, particularly with regard to the specific biological benefits of high or low aneurysm WSS. Therefore, this research proposes an additional parameter of WSS at the stent struts that could provide valuable insight regarding the device's potential to promote occlusion at the aneurysm neck by indicating locations of increased platelet activation and microparticle shedding. Fluid flow effects were evaluated for two flow diverters (Pipeline™ and FRED™) and three stents (Enterprise™, Atlas™, and LVIS™) using computational fluid dynamics (CFD) models developed from two patient-derived CTA datasets with aneurysms in the middle cerebral artery (MCA) and basilar artery (BA), respectively. The device WSS data provides an additional metric for evaluating the ability of the device to constrain the blood flow within the main vessel, as well as indicating potential locations of the initiation of aneurysm occlusion. It is hypothesized that high device WSS close to the aneurysm neck creates a higher likelihood of thrombus formation and aneurysm occlusion due to platelet activation and microparticle shedding, while high device WSS proximal or distal on the device would indicate a higher likelihood of undesirable daughter vessel occlusion. Conversely, low-to-moderate device WSS throughout the device length could be interpreted as a reduced likelihood of complete occlusion of the aneurysm over time, resulting in lesser device performance.

References

1.
Ngoepe
,
M. N.
,
Frangi
,
A. F.
,
Byrne
,
J. V.
, and
Ventikos
,
Y.
,
2018
, “
Thrombosis in Cerebral Aneurysms and the Computational Modeling Thereof: A Review
,”
Front. Physiol.
,
9
, p.
306
.10.3389/fphys.2018.00306
2.
Umeda
,
Y.
,
Ishida
,
F.
,
Tsuji
,
M.
,
Furukawa
,
K.
,
Shiba
,
M.
,
Yasuda
,
R.
,
Toma
,
N.
,
Sakaida
,
H.
, and
Suzuki
,
H.
,
2017
, “
Computational Fluid Dynamics (CFD) Using Porous Media Modeling Predicts Recurrence After Coiling of Cerebral Aneurysms
,”
PLoS One
,
12
(
12
), p.
e0190222
.10.1371/journal.pone.0190222
3.
Baharoglu
,
M. I.
,
Schirmer
,
C. M.
,
Hoit
,
D. A.
,
Gao
,
B. L.
, and
Malek
,
A. M.
,
2010
, “
Aneurysm Inflow-Angle as a Discriminant for Rupture in Sidewall Cerebral Aneurysms: Morphometric and Computational Fluid Dynamic Analysis
,”
Stroke
,
41
(
7
), pp.
1423
1430
.10.1161/STROKEAHA.109.570770
4.
Xiang
,
J.
,
Natarajan
,
S. K.
,
Tremmel
,
M.
,
Ma
,
D.
,
Mocco
,
J.
,
Hopkins
,
L. N.
,
Siddiqui
,
A. H.
,
Levy
,
E. I.
, and
Meng
,
H.
,
2011
, “
Hemodynamic-Morphological Discriminants for Intracranial Aneurysm Rupture
,”
Stroke
,
42
(
1
), pp.
144
152
.10.1161/STROKEAHA.110.592923
5.
Xiang
,
J.
,
Yu
,
J.
,
Choi
,
H.
,
Dolan Fox
,
J. M.
,
Snyder
,
K. V.
,
Levy
,
E. I.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2015
, “
Rupture Resemblance Score (RRS): Toward Risk Stratification of Unruptured Intracranial Aneurysms Using Hemodynamic-Morphological Discriminants
,”
J. Neurointerv. Surg.
,
7
(
7
), pp.
490
495
.10.1136/neurintsurg-2014-011218
6.
Xiang
,
J.
,
Yu
,
J.
,
Snyder
,
K. V.
,
Levy
,
E. I.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2016
, “
Hemodynamic-Morphological Discriminant Models for Intracranial Aneurysm Rupture Remain Stable With Increasing Sample Size
,”
J. Neurointerv. Surg.
,
8
, pp.
104
110
.10.1136/neurintsurg-2014-011477
7.
Dholakia
,
R.
,
Sadasivan
,
C.
,
Fiorella
,
D. J.
,
Woo
,
H. H.
, and
Lieber
,
B. B.
,
2017
, “
Hemodynamics of Flow Diverters
,”
ASME J. Biomech. Eng.
,
139
(
2
), p.
021002
.10.1115/1.4034932
8.
Tang
,
A. Y.
,
Chan
,
H. N.
,
Tsang
,
A. C.
,
Leung
,
G. K.
,
Leung
,
K. M.
,
Yu
,
A. G.
, and
Chow
,
K.
,
2013
, “
The Effects of Stent Porosity on the Endovascular Treatment of Intracranial Aneurysms Located Near a Bifurcation
,”
J. Biomed. Eng.
,
6
, pp.
812
822
.10.4236/jbise.2013.68099
9.
Jankowitz
,
B. T.
,
Gross
,
B. A.
,
Seshadhri
,
S.
,
Girdhar
,
G.
,
Jadhav
,
A.
,
Jovin
,
T. G.
, and
Wainwright
,
J. M.
,
2019
, “
Hemodynamic Differences Between Pipeline and Coil-Adjunctive Intracranial Stents
,”
J. NeuroInterv. Surg.
,
11
(
9
), pp.
908
911
.10.1136/neurintsurg-2018-014439
10.
Li
,
W.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Wang
,
K.
,
Zhang
,
Y.
,
Tian
,
Z.
,
Yang
,
X.
, and
Liu
,
J.
,
2019
, “
Efficacy of LVIS Vs. Enterprise Stent for Endovascular Treatment of Medium-Sized Intracranial Aneurysms: A Hemodynamic Comparison Study
,”
Front. Neurol.
,
10
, p.
522
.10.3389/fneur.2019.00522
11.
Kono
,
K.
, and
Terada
,
T.
,
2013
, “
Hemodynamics of 8 Different Configurations of Stenting for Bifurcation Aneurysms
,”
Am. J. Neuroradiol.
,
34
(
10
), pp.
1980
1986
.10.3174/ajnr.A3479
12.
Babiker
,
M. H.
,
Gonzalez
,
L. F.
,
Ryan
,
J.
,
Albuquerque
,
F.
,
Collins
,
D.
,
Elvikis
,
A.
, and
Frakes
,
D. H.
,
2012
, “
Influence of Stent Configuration on Cerebral Aneurysm Fluid Dynamics
,”
J. Biomech.
,
45
(
3
), pp.
440
447
.10.1016/j.jbiomech.2011.12.016
13.
Cebral
,
J. R.
,
Mut
,
F.
,
Raschi
,
M.
,
Hodis
,
S.
,
Ding
,
Y. H.
,
Erickson
,
B. J.
,
Kadirvel
,
R.
, and
Kallmes
,
D. F.
,
2014
, “
Analysis of Hemodynamics and Aneurysm Occlusion After Flow-Diverting Treatment in Rabbit Models
,”
Am. J. Neuroradiol.
,
35
(
8
), pp.
1567
1573
.10.3174/ajnr.A3913
14.
Mut
,
F.
,
Raschi
,
M.
,
Scrivano
,
E.
,
Bleise
,
C.
,
Chudyk
,
J.
,
Ceratto
,
R.
,
Lylyk
,
P.
, and
Cebral
,
J. R.
,
2015
, “
Association Between Hemodynamic Conditions and Occlusion Times After Flow Diversion in Cerebral Aneurysms
,”
J. NeuroInterv. Surg.
,
7
, pp.
286
290
.10.1136/neurintsurg-2013-011080
15.
Wang
,
C.
,
Tian
,
Z.
,
Liu
,
J.
,
Jing
,
L.
,
Paliwal
,
N.
,
Wang
,
S.
,
Zhang
,
Y.
,
Xiang
,
J.
,
Siddiqui
,
A. H.
,
Meng
,
H.
, and
Yang
,
X.
,
2016
, “
Flow Diverter Effect of LVIS Stent on Cerebral Aneurysm Hemodynamics: A Comparison With Enterprise Stents and the Pipeline Device
,”
J. Transl. Med.
,
14
(
1
), p.
199
.10.1186/s12967-016-0959-9
16.
Roszelle
,
B. N.
,
Gonalez
,
L. F.
,
Babiker
,
M. H.
,
Ryan
,
J.
,
Albuquerque
,
F. C.
, and
Frakes
,
D. H.
,
2013
, “
Flow Diverter Effects on Cerebral Aneurysm Hemodynamics: An In Vitro Comparison of Telescoping Stents and the Pipeline
,”
Neuroradiology
,
55
(
6
), pp.
751
758
.10.1007/s00234-013-1169-2
17.
Damiano
,
R. J.
,
Tutino
,
V. M.
,
Paliwal
,
N.
,
Ma
,
D.
,
Davies
,
J. M.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2017
, “
Compacting a Single Flow Diverter Versus Overlapping Flow Diverters for Intracranial Aneurysms: A Computational Study
,”
Am. J. Neuroradiol.
,
38
(
3
), pp.
603
610
.10.3174/ajnr.A5062
18.
Levitt
,
M. R.
,
Mandrycky
,
C.
,
Abel
,
A.
,
Kelly
,
C. M.
,
Levy
,
S.
,
Chivukula
,
V. K.
,
Zheng
,
Y.
,
Aliseda
,
A.
, and
Kim
,
L. J.
,
2019
, “
Genetic Correlates of Wall Shear Stress in a Patient Specific 3D-Printed Cerebral Aneurysm Model
,”
J. NeuroInterv. Surg.
,
11
(
10
), pp.
999
1003
.10.1136/neurintsurg-2018-014669
19.
Meng
,
H.
,
Tutino
,
V. M.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2014
, “
High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.10.3174/ajnr.A3558
20.
Xiang
,
J.
,
Tutino
,
V. M.
,
Snyder
,
K. V.
, and
Meng
,
H.
,
2014
, “
CFD: Computational Fluid Dynamics or Confounding Factor Dissemination? The Role of Hemodynamics in Intracranial Aneurysm Rupture Risk Assessment
,”
Am. J. Neuroradiol.
,
35
(
10
), pp.
1849
1857
.10.3174/ajnr.A3710
21.
Nobili
,
M.
,
Sheriff
,
J.
,
Morbiducci
,
U.
,
Redaelli
,
A.
, and
Bluestein
,
D.
,
2008
, “
Platelet Activation Due to Hemodynamic Shear Stresses: Damage Accumulation Model and Comparison to In Vitro Measurements
,”
ASAIO J.
,
54
(
1
), pp.
62
72
.10.1097/MAT.0b013e31815d6898
22.
Mejia
,
J.
,
Ruzzeh
,
B.
,
Mongrain
,
R.
,
Leask
,
R.
, and
Bertrand
,
O. F.
,
2009
, “
Evaluation of the Effect of Stent Strut Profile on Shear Stress Distribution Using Statistical Moments
,”
Biomed. Eng. Online
,
8
, p.
8
.10.1186/1475-925X-8-8
23.
Miyazaki
,
Y.
,
Nomura
,
S.
,
Miyake
,
T.
,
Kagawa
,
H.
,
Kitada
,
C.
,
Taniguchi
,
H.
,
Komiyama
,
Y.
,
Fujimura
,
Y.
,
Ikeda
,
Y.
, and
Fukuhara
,
S.
,
1996
, “
High Shear Stress Can Initiate Both Platelet Aggregation and Shedding of Procoagulant Containing Microparticles
,”
Blood
,
88
(
9
), pp.
3456
3464
.10.1182/blood.V88.9.3456.bloodjournal8893456
24.
Looyenga
,
E. M.
,
Propst
,
A. M.
, and
Gent
,
S. P.
,
2017
, “
Investigating the Effects of Stent-Graft Structural Features Using Computational Fluid Dynamics
,”
ASME
Paper No. IMECE2017-71442.10.1115/IMECE2017-71442
25.
Edgell
,
R. C.
,
2014
, “
Overview of Newer Stent Devices for Aneurysm Treatment
,” Presentation to
Society of Vascular and Interventional Neurology (SVIN), St. Louis University
(
SLU
),
St. Louis, MO
.https://www.svin.org/files/Edgell_Over.pdf
26.
Sfyroeras
,
G. S.
,
Dalainas
,
I.
,
Giannakopoulos
,
T. G.
,
Antonopoulos
,
K.
,
Kakisis
,
J. D.
, and
Liapis
,
C. D.
,
2012
, “
Flow-Diverting Stents for the Treatment of Arterial Aneurysms
,”
J. Vasc. Surg.
,
56
(
3
), pp.
839
846
.10.1016/j.jvs.2012.04.020
27.
Devault
,
K.
,
Gremaud
,
P. A.
,
Novak
,
V.
,
Olufsen
,
M. S.
,
Vernieres
,
G.
, and
Zhao
,
P.
,
2008
, “
Blood Flow in the Circle of Willis: Modeling and Calibration
,”
Multiscale Model Sim.
,
7
(
2
), pp.
888
909
.10.1137/07070231X
28.
Pearson
,
T. C.
,
2001
, “
Hemorheology in the Erythrocytoses
,”
Mt Sinai J. Med.
,
68
(
3
), pp.
182
191
.https://pubmed.ncbi.nlm.nih.gov/11373690/#:~:text=In%20the%20erythrocytosis%20of%20hypoxemic,changes%20of%20increased%20vessel%20diameter.
29.
Pries
,
A. R.
,
Neuhaus
,
D.
, and
Gaehtgens
,
P.
,
1992
, “
Blood Viscosity in Tube Flow: Dependence on Diameter and Hematocrit
,”
Am. J. Physiol.
,
263
(
6 Pt 2
), pp.
H1770
H1778
.10.1152/ajpheart.1992.263.6.H1770
30.
Box
,
F. M.
,
van der Geest
,
R. J.
,
Rutten
,
M. C. M.
, and
Reiber
,
J. H. C.
,
2005
, “
The Influence of Flow, Vessel Diameter, and Non-Newtonian Blood Viscosity on the Wall Shear Stress in a Carotid Bifurcation Model for Unsteady Flow
,”
Invest. Radiol.
,
40
(
5
), pp.
277
294
.10.1097/01.rli.0000160550.95547.22
31.
Smithee
,
I.
, and
Gent
,
S. P.
,
2018
, “
Computational Fluid Dynamics Modeling of Blood as a Heterogeneous Fluid
,”
ASME
Paper No. DMD2018-6873.10.1115/DMD2018-6873
32.
Looyenga
,
E. M.
, and
Gent
,
S. P.
,
2018
, “
Examination of Fluid-Structure Interaction in Stent Grafts and Its Hemodynamic Implications
,”
ASME
Paper No. DMD2018-6872.10.1115/DMD2018-6872
33.
Rossitti
,
S.
, and
Lofgren
,
J.
,
1993
, “
Vascular Dimensions of the Cerebral Arteries Follow the Principle of Minimum Work
,”
Stroke
,
24
(
3
), pp.
371
377
.10.1161/01.STR.24.3.371
You do not currently have access to this content.