Abstract

Robotic laparoendoscopic single site surgery (LESS) is emerging as a hot research topic with the advancement of robotics. However, the movement of the rigid catheter inserted through a fixed incision into the patient's body cavity is constrained to a conical workspace, and the surgical instruments introduced through channels in the catheter can hardly perform necessary operations when the target tissue is close to the boundary of this workspace. In this paper, we present a novel robotic system for LESS with a bendable catheter. The diameter of the bendable catheter is 30 mm and the length is 22 mm. The bendable portion of the catheter provides two degrees-of-freedom (DOF) within the body cavity and can be bent up to 45 deg. The system consists of two continuum instruments with 6DOF and a three-dimensional endoscope with 5DOF. System design, kinematic analysis, and teleoperation algorithm are introduced in detail. The simulation shows that the catheter centerline can be oriented toward the target tissue over a large area, thus providing a better initial position for the surgical instruments and enlarging the workspace of the instruments. Preliminary experiments are performed to verify the feasibility and effectiveness of the proposed system. The results prove the applicability of the system in LESS.

References

1.
Arkenbout
,
E. A.
,
Henselmans
,
P. W.
,
Jelínek
,
F.
, and
Breedveld
,
P.
,
2015
, “
A State of the Art Review and Categorization of Multi-Branched Instruments for NOTES and SILS
,”
Surg. Endosc.
,
29
(
6
), pp.
1281
1296
.10.1007/s00464-014-3816-z
2.
Li
,
C.
,
Yan
,
Y.
,
Xiao
,
X.
,
Gu
,
X.
,
Gao
,
H.
,
Duan
,
X.
,
Zuo
,
X.
,
Li
,
Y.
, and
Ren
,
H.
,
2021
, “
A Miniature Manipulator With Variable Stiffness Towards Minimally Invasive Transluminal Endoscopic Surgery
,”
IEEE Rob. Autom. Lett.
,
6
(
3
), pp.
5541
5548
.10.1109/LRA.2021.3068115
3.
Yang
,
Y.
,
Kong
,
K.
,
Li
,
J.
,
Wang
,
S.
, and
Li
,
J.
,
2019
, “
Design and Evaluation of a Dexterous and Modular Hand-Held Surgical Robot for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
13
(
4
), p. 041005.10.1115/1.4044527
4.
Lu
,
K.
,
Song
,
C.
,
Zhu
,
X.
, and
Shen
,
T.
,
2016
, “
Design of a Novel Cable-Driven Joint for Laparoscopic Instruments
,”
ASME J. Med. Devices
,
10
(
3
), p.
030913
.10.1115/1.4033788
5.
Quaglia
,
C.
,
Petroni
,
G.
,
Niccolini
,
M.
,
Caccavaro
,
S.
,
Dario
,
P.
, and
Menciassi
,
A.
,
2014
, “
Design of a Compact Robotic Manipulator for Single-Port Laparoscopy
,”
ASME J. Mech. Des.
,
136
(
10
), p. 105001.10.1115/1.4027782
6.
Lee
,
H.
,
Choi
,
Y.
, and
Yi
,
B.-J.
,
2012
, “
Stackable 4-Bar Manipulators for Single Port Access Surgery
,”
IEEE/ASME Trans. Mechatron.
,
17
(
1
), pp.
157
166
.10.1109/TMECH.2010.2098970
7.
Katoch
,
R.
,
Yamakawa
,
Y.
,
Ueda
,
J.
, and
Honda
,
H.
,
2016
, “
Design and Analysis of an Articulated Single-Port Laparoscopic Surgical Device
,”
ASME J. Med. Devices
,
10
(
3
), p.
030912
.10.1115/1.4033789
8.
Hwang
,
M.
,
Yang
,
U. J.
,
Kong
,
D.
,
Chung
,
D. G.
,
Lim
,
J. G.
,
Lee
,
D. H.
,
Kim
,
D. H.
,
Shin
,
D.
,
Jang
,
T.
, and
Kim
,
J. W.
,
2017
, “
A Single Port Surgical Robot System With Novel Elbow Joint Mechanism for High Force Transmission
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
13
(
4
), p. e1808.10.1002/rcs.1808
9.
Jelínek
,
F.
,
Pessers
,
R.
, and
Breedveld
,
P.
,
2014
, “
Dragonflex Smart Steerable Laparoscopic Instrument
,”
ASME J. Med. Devices
,
8
(
1
), p. 015001.10.1115/1.4026153
10.
Cheon
,
B.
,
Gezgin
,
E.
,
Ji
,
D. K.
,
Tomikawa
,
M.
,
Hashizume
,
M.
,
Kim
,
H. J.
, and
Hong
,
J.
,
2014
, “
A Single Port Laparoscopic Surgery Robot With High Force Transmission and a Large Workspace
,”
Surg. Endosc.
,
28
(
9
), pp.
2719
2729
.10.1007/s00464-014-3534-6
11.
Jones
,
B. A.
, and
Walker
,
I. D.
,
2006
, “
Kinematics for Multisection Continuum Robots
,”
IEEE Trans. Rob.
,
22
(
1
), pp.
43
55
.10.1109/TRO.2005.861458
12.
Dong
,
X.
,
Raffles
,
M.
,
Cobos-Guzman
,
S.
,
Axinte
,
D.
, and
Kell
,
J.
,
2015
, “
A Novel Continuum Robot Using Twin-Pivot Compliant Joints: Design, Modeling, and Validation
,”
ASME J. Mech. Rob.
,
8
(
2
), p. 021010.10.1115/1.4031340
13.
Hong
,
W.
,
Xie
,
L.
,
Liu
,
J.
,
Sun
,
Y.
,
Li
,
K.
, and
Wang
,
H.
,
2018
, “
Development of a Novel Continuum Robotic System for Maxillary Sinus Surgery
,”
IEEE/ASME Trans. Mechatron.
,
23
(
3
), pp.
1226
1237
.10.1109/TMECH.2018.2818442
14.
Hu
,
Z.
,
Li
,
J.
, and
Wang
,
S.
,
2023
, “
Design and Kinematics of a Robotic Instrument for Natural Orifice Transluminal Endoscopic Surgery
,”
IEEE/ASME Trans. Mechatron.
,
28
(
5
), pp.
2840
2851
.10.1109/TMECH.2023.3249413
15.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.10.1177/0278364910368147
16.
Xu
,
K.
,
Zhao
,
J.
, and
Fu
,
M.
,
2015
, “
Development of the SJTU Unfoldable Robotic System (SURS) for Single Port Laparoscopy
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2133
2145
.10.1109/TMECH.2014.2364625
17.
Dupont
,
P. E.
,
Simaan
,
N.
,
Choset
,
H.
, and
Rucker
,
C.
,
2022
, “
Continuum Robots for Medical Interventions
,”
Proc. IEEE
,
110
(
7
), pp.
847
870
.10.1109/JPROC.2022.3141338
18.
Lee
,
J.
,
Kim
,
J.
,
Lee
,
K.-K.
,
Hyung
,
S.
,
Kim
,
Y.-J.
,
Kwon
,
W.
,
Roh
,
K.
, and
Choi
,
J.-Y.
,
2014
, “
Modeling and Control of Robotic Surgical Platform for Single-Port Access Surgery
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Chicago, IL, Sept. 14–18, pp.
3489
3495
.10.1109/IROS.2014.6943049
19.
Neto
,
M. G.
,
Ramos
,
A.
, and
Campos
,
J.
,
2009
, “
Single Port Laparoscopic Access Surgery
,”
Tech. Gastrointest. Endosc.
,
11
(
2
), pp.
84
93
.10.1016/j.tgie.2009.06.007
20.
Suh
,
J.-W.
,
Kim
,
K.-Y.
,
Jeong
,
J.-W.
, and
Lee
,
J.-J.
,
2015
, “
Design Considerations for a Hyper-Redundant Pulleyless Rolling Joint With Elastic Fixtures
,”
IEEE/ASME Trans. Mechatron.
,
20
(
6
), pp.
2841
2852
.10.1109/TMECH.2015.2389228
21.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.10.1109/TRO.2015.2489500
22.
Russo
,
M.
,
Sadati
,
S. M. H.
,
Dong
,
X.
,
Mohammad
,
A.
,
Walker
,
I. D.
,
Bergeles
,
C.
,
Xu
,
K.
, and
Axinte
,
D. A.
,
2023
, “
Continuum Robots: An Overview
,”
Adv. Intell. Syst.
,
5
(
5
), p.
2200367
.10.1002/aisy.202200367
23.
Leibrandt
,
K.
,
Wisanuvej
,
P.
,
Gras
,
G.
,
Shang
,
J.
,
Seneci
,
C. A.
,
Giataganas
,
P.
,
Vitiello
,
V.
,
Darzi
,
A.
, and
Yang
,
G.-Z.
,
2017
, “
Effective Manipulation in Confined Spaces of Highly Articulated Robotic Instruments for Single Access Surgery
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1704
1711
.10.1109/LRA.2017.2668465
24.
Xu
,
K.
,
Fu
,
M.
, and
Zhao
,
J.
,
2014
, “
An Experimental Kinestatic Comparison Between Continuum Manipulators With Structural Variations
,” IEEE International Conference on Robotics and Automation (
ICRA
),
Hong Kong, China
, May 31–June 7, pp.
3258
3264
.10.1109/ICRA.2014.6907327
25.
Armanini
,
C.
,
Boyer
,
F.
,
Mathew
,
A. T.
,
Duriez
,
C.
, and
Renda
,
F.
,
2023
, “
Soft Robots Modeling: A Structured Overview
,”
IEEE Trans. Rob.
,
39
(
3
), pp.
1728
1748
.10.1109/TRO.2022.3231360
26.
Rao
,
P.
,
Peyron
,
Q.
,
Lilge
,
S.
, and
Burgner-Kahrs
,
J.
,
2021
, “
How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance
,”
Front. Rob. AI
,
7
, p.
630245
.10.3389/frobt.2020.630245
27.
Bajo
,
A.
,
Pickens
,
R. B.
,
Herrell
,
S. D.
, and
Simaan
,
N.
,
2013
, “
Constrained Motion Control of Multisegment Continuum Robots for Transurethral Bladder Resection and Surveillance
,” Proceedings of the 2013 IEEE International Conference on Robotics and Automation (
ICRA
),
Karlsruhe, Germany
, May 6–10, pp.
5837
5842
.10.1109/ICRA.2013.6631417
28.
Ding
,
J.
,
Goldman
,
R. E.
,
Xu
,
K.
,
Allen
,
P. K.
,
Fowler
,
D. L.
, and
Simaan
,
N.
,
2013
, “
Design and Coordination Kinematics of an Insertable Robotic Effectors Platform for Single-Port Access Surgery
,”
IEEE/ASME Trans. Mechatron.
,
18
(
5
), pp.
1612
1624
.10.1109/TMECH.2012.2209671
29.
Nakamura
,
Y.
, and
Hanafusa
,
H.
,
1986
, “
Inverse Kinematic Solutions With Singularity Robustness for Robot Manipulator Control
,”
ASME J. Dyn. Syst., Meas., Control
,
108
(
3
), pp.
163
171
.10.1115/1.3143764
You do not currently have access to this content.