Abstract

Rotational atherectomy (RA) is a minimally invasive procedure to remove the calcified atherosclerotic plaque from arteries to restore blood flow. It uses a high-speed, metal-bonded diamond abrasive grinding wheel to pulverize the calcified plaque into absorbable debris via a catheter through the artery. Although RA has been clinically used for over two decades, procedural complications persist and there remains a lack of consensus on the optimal device parameters. This study aims to investigate the material removal rate (MRR) in coronary RA with respect to grinding wheel sizes and rotational speeds based on a tissue-mimicking phantom. Three grinding wheel sizes, 1.25, 1.5, and 1.75 mm in diameter, and three rotational speeds, 1,20,000, 1,50,000, and 1,80,000 rpm, were investigated. The RA MRR was presented as the luminal area gain and measured by microscopy and image processing. The results show the increase in the grinding wheel size or rotational speed leads to a higher MRR and luminal gain in RA. With a 1.75 mm diameter grinding wheel rotating at 1,80,000 rpm in a 2 mm initial diameter lumen, the max MRR and the luminal gain are 2.49 mm2/threepasses and 5.09 mm2, respectively. The MRR decreases as the number of grinding passes increases during RA with the same grinding wheel rotating at a constant speed. This study provides a thorough understanding of the wheel size and speed effects on coronary RA MRR for potential improvements in RA devices and clinical operational guidelines.

References

1.
World Health Organization
, “
The Top 10 Causes of Death
,”
WHO
,
Geneva, Switzerland
, accessed Oct. 20, 2023, https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
2.
Virani
,
S. S.
,
Alonso
,
A.
,
Benjamin
,
E. J.
,
Bittencourt
,
M. S.
,
Callaway
,
C. W.
,
Carson
,
A. P.
,
Chamberlain
,
A. M.
,
Chang
,
A. R.
,
Cheng
,
S.
,
Delling
,
F. N.
,
Djousse
,
L.
, et al.
2020
, “
Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association
,”
Circulation
,
141
(
9
), pp.
e139
e596
. 10.1161/CIR.0000000000000757
3.
Landau
,
C.
,
Lange
,
R. A.
, and
Hillis
,
L. D.
,
1994
, “
Percutaneous Transluminal Coronary Angioplasty
,”
New Engl. J. Med.
,
330
(
14
), pp.
981
993
.10.1056/NEJM199404073301407
4.
Bittl
,
J. A.
,
1996
, “
Advances in Coronary Angioplasty
,”
New Engl. J. Med.
,
335
(
17
), pp.
1290
1302
.10.1056/NEJM199610243351707
5.
Mizobuchi
,
M.
,
Towler
,
D.
, and
Slatopolsky
,
E.
,
2009
, “
Vascular Calcification: The Killer of Patients With Chronic Kidney Disease
,”
J. Am. Soc. Nephrol.
,
20
(
7
), pp.
1453
1464
.10.1681/ASN.2008070692
6.
Disthabanchong
,
S.
,
2012
, “
Vascular Calcification in Chronic Kidney Disease: Pathogenesis and Clinical Implication
,”
World J. Nephrol.
,
1
(
2
), p.
43
.10.5527/wjn.v1.i2.43
7.
Fitzgerald
,
P. J.
,
Ports
,
T. A.
, and
Yock
,
P. G.
,
1992
, “
Contribution of Localized Calcium Deposits to Dissection After Angioplasty. An Observational Study Using Intravascular Ultrasound
,”
Circulation
,
86
(
1
), pp.
64
70
.10.1161/01.CIR.86.1.64
8.
Sharma
,
S. K.
,
Tomey
,
M. I.
,
Teirstein
,
P. S.
,
Kini
,
A. S.
,
Reitman
,
A. B.
,
Lee
,
A. C.
,
Généreux
,
P.
,
Chambers
,
J. W.
,
Grines
,
C. L.
,
Himmelstein
,
S. I.
,
Thompson
,
C. A.
,
Meredith
,
I. T.
,
Bhave
,
A.
, and
Moses
,
J. W.
,
2019
, “
North American Expert Review of Rotational Atherectomy
,”
Circ. Cardiovasc. Interv.
,
12
(
5
), p.
e007448
.10.1161/CIRCINTERVENTIONS.118.007448
9.
Cavusoglu
,
E.
,
Kini
,
A. S.
,
Marmur
,
J. D.
, and
Sharma
,
S. K.
,
2004
, “
Current Status of Rotational Atherectomy
,”
Catheter. Cardiovasc. Interv.
,
62
(
4
), pp.
485
498
.10.1002/ccd.20081
10.
Barbato
,
E.
,
Carrié
,
D.
,
Dardas
,
P.
,
Fajadet
,
J.
,
Gaul
,
G.
, and
Haude
,
M.
, et al,
2015
, “
European Expert Consensus on Rotational Atherectomy
,”
EuroIntervention
,
11
(
1
), pp.
30
36
.10.4244/EIJV11I1A6
11.
Chambers
,
J. W.
,
Behrens
,
A. N.
, and
Martinsen
,
B. J.
,
2016
, “
Atherectomy Devices for the Treatment of Calcified Coronary Lesions
,”
Interv. Cardiol. Clin.
,
5
(
2
), pp.
143
151
.10.1016/j.iccl.2015.12.003
12.
Tomey
,
M. I.
,
Kini
,
A. S.
, and
Sharma
,
S. K.
,
2014
, “
Current Status of Rotational Atherectomy
,”
JACC: Cardiovasc. Interv.
,
7
(
4
), pp.
345
353
.10.1016/j.jcin.2013.12.196
13.
Kurogi
,
K.
,
Ishii
,
M.
,
Ikebe
,
S.
,
Kaichi
,
R.
,
Mori
,
T.
,
Komaki
,
S.
,
Yamamoto
,
N.
,
Yamanaga
,
K.
,
Arima
,
Y.
,
Yamamoto
,
E.
,
Kaikita
,
K.
,
Matsushita
,
K.
, and
Tsujita
,
K.
,
2022
, “
Optical Coherence Tomography—Versus Intravascular Ultrasound-Guided Stent Expansion in Calcified Lesions
,”
Cardiovasc. Interv. Ther.
,
37
(
2
), pp.
312
323
.10.1007/s12928-021-00790-7
14.
Ishibashi
,
K.
,
Nakama
,
T.
, and
Obunai
,
K.
,
2021
, “
Veno-Arterial Extracorporeal Membrane Oxygenation Support for Percutaneous Coronary Intervention Before Transcatheter Aortic Valve Replacement
,”
IHJ Cardiovasc. Case Rep. (CVCR)
,
5
(
1
), pp.
52
54
.10.1016/j.ihjccr.2020.12.001
15.
Morofuji
,
T.
,
Kuramitsu
,
S.
,
Shinozaki
,
T.
,
Jinnouchi
,
H.
,
Sonoda
,
S.
,
Domei
,
T.
,
Hyodo
,
M.
,
Shirai
,
S.
, and
Ando
,
K.
,
2021
, “
Clinical Impact of Calcified Nodule in Patients With Heavily Calcified Lesions Requiring Rotational Atherectomy
,”
Catheter. Cardiovasc. Interv.
,
97
(
1
), pp.
10
19
.10.1002/ccd.28896
16.
Zheng
,
Y.
,
2016
, “
Grinding Wheel Motion and Force Analysis in Atherosclerotic Plaque Removal by Atherectomy
,”
Ph.D. dissertation
, University of Michigan, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/135846
17.
Zheng
,
Y.
,
Liu
,
Y.
,
Liu
,
Y.
, and
Shih
,
A. J.
,
2016
, “
Experimental Investigation of the Grinding Force in Rotational Atherectomy
,”
Procedia Manuf.
,
5
, pp.
838
848
.10.1016/j.promfg.2016.08.069
18.
Shih
,
A. J.
,
Liu
,
Y.
, and
Zheng
,
Y.
,
2016
, “
Grinding Wheel Motion, Force, Temperature, and Material Removal in Rotational Atherectomy of Calcified Plaque
,”
CIRP Ann.
,
65
(
1
), pp.
345
348
.10.1016/j.cirp.2016.04.012
19.
Zheng
,
Y.
,
Belmont
,
B.
, and
Shih
,
A. J.
,
2015
, “
Experimental Investigation of the Grinding Wheel Dynamics in Atherectomy
,”
Procedia Manuf.
,
1
, pp.
879
891
.10.1016/j.promfg.2015.09.080
20.
Liu
,
Y.
,
Liu
,
Y.
,
Zheng
,
Y.
,
Li
,
B.
, and
Shih
,
A.
,
2019
, “
Catheter Thermal Energy Generation and Temperature in Rotational Atherectomy
,”
Med. Eng. Phys.
,
70
, pp.
29
38
.10.1016/j.medengphy.2019.06.014
21.
Reisman
,
M.
,
Shuman
,
B. J.
,
Dillard
,
D.
,
Fei
,
R.
,
Misser
,
K. H.
,
Gordon
,
L. S.
, and
Harms
,
V.
,
1998
, “
Analysis of Low‐Speed Rotational Atherectomy for the Reduction of Platelet Aggregation
,”
Catheter. Cardiovasc. Diagn.
,
45
(
2
), pp.
208
214
.10.1002/(SICI)1097-0304(199810)45:2%3C208::AID-CCD21%3E3.0.CO;2-F
22.
Iannopollo
,
G.
,
Francesco Gallo
,
M. D.
,
Antonio Mangieri
,
M. D.
,
Alessandra Laricchia
,
M. D.
,
Andrea Erriquez
,
M. D.
,
Tzanis
,
G.
,
Antonio Colombo
,
M. D.
, and
Francesco Giannini
,
M. D.
,
2019
, “
Tips and Tricks for Rotational Atherectomy
,”
J. Invasive Cardiol.
,
31
(
12
), pp.
376
383
.https://pubmed.ncbi.nlm.nih.gov/31786529/
23.
Zheng
,
Y.
,
Lyu
,
J.
,
Liu
,
Y.
,
Lo
,
J.
,
Susamaz
,
A.
,
Gurm
,
H. S.
, and
Shih
,
A. J.
,
2018
, “
Grinding Wheel Motion and Force During Plaque Removal by Rotational Atherectomy in Angulated Coronary Artery
,”
ASME
Paper No. MSEC2018-6686.10.1115/MSEC2018-6686
24.
Zheng
,
Y.
,
Liu
,
Y.
,
Pitre
,
J. J.
,
Bull
,
J. L.
,
Gurm
,
H. S.
, and
Shih
,
A. J.
,
2018
, “
Computational Fluid Dynamics Modeling of the Burr Orbital Motion in Rotational Atherectomy With Particle Image Velocimetry Validation
,”
Ann. Biomed. Eng.
,
46
(
4
), pp.
567
578
.10.1007/s10439-018-1984-z
25.
Zheng
,
Y.
,
Belmont
,
B.
, and
Shih
,
A. J.
,
2016
, “
Experimental Investigation of the Abrasive Crown Dynamics in Orbital Atherectomy
,”
Med. Eng. Phys.
,
38
(
7
), pp.
639
647
.10.1016/j.medengphy.2016.04.006
26.
Lyu
,
J. J.
,
Wu
,
X.
,
Liu
,
Y.
,
Liu
,
Y.
,
Li
,
A. D.-R.
,
Zheng
,
Y.
, and
Shih
,
A.
,
2019
, “
A Miniature Nickel-Diamond Electroplated Wheel for Grinding of the Arterial Calcified Plaque
,”
Procedia Manuf.
,
34
, pp.
222
227
.10.1016/j.promfg.2019.06.142
27.
Kim
,
M.-H.
,
Kim
,
H.-J.
,
Kim
,
N. N.
,
Yoon
,
H.-S.
, and
Ahn
,
S.-H.
,
2011
, “
A Rotational Ablation Tool for Calcified Atherosclerotic Plaque Removal
,”
Biomed. Microdevices
,
13
(
6
), pp.
963
971
.10.1007/s10544-011-9566-y
28.
Nakao
,
M.
,
Tsuchiya
,
K.
,
Maeda
,
W.
, and
Iijima
,
D.
,
2005
, “
A Rotating Cutting Tool to Remove Hard Cemented Deposits in Heart Blood Vessels Without Damaging Soft Vessel Walls
,”
CIRP Annals
,
54
(
1
), pp.
37
40
.10.1016/S0007-8506(07)60044-4
29.
Zheng
,
Y.
,
Liu
,
Y.
,
Liu
,
Y.
, and
Shih
,
A. J.
,
2019
, “
Multigrain Smoothed Particle Hydrodynamics and Hertzian Contact Modeling of the Grinding Force in Atherectomy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041015
.10.1115/1.4042603
30.
Kobayashi
,
N.
,
Yamawaki
,
M.
,
Hirano
,
K.
,
Araki
,
M.
,
Sakai
,
T.
,
Sakamoto
,
Y.
,
Mori
,
S.
,
Tsutsumi
,
M.
,
Sahara
,
N.
,
Nauchi
,
M.
,
Honda
,
Y.
,
Makino
,
K.
,
Shirai
,
S.
,
Mizusawa
,
M.
,
Sugizaki
,
Y.
,
Nakano
,
T.
,
Fukagawa
,
T.
,
Kishida
,
T.
,
Kozai
,
Y.
,
Setonaga
,
Y.
,
Goda
,
S.
, and
Ito
,
Y.
,
2020
, “
Additional Debulking Efficacy of Low-Speed Rotational Atherectomy After High-Speed Rotational Atherectomy for Calcified Coronary Lesion
,”
Int. J. Cardiovasc. Imag.
,
36
(
10
), pp.
1811
1819
.10.1007/s10554-020-01912-7
31.
Yamamoto
,
T.
,
Yada
,
S.
,
Matsuda
,
Y.
,
Otani
,
H.
,
Yoshikawa
,
S.
,
Sasaoka
,
T.
,
Hatano
,
Y.
,
Umemoto
,
T.
,
Ueshima
,
D.
,
Maejima
,
Y.
,
Hirao
,
K.
, and
Ashikaga
,
T.
,
2019
, “
A Novel Rotablator Technique (Low-Speed Following High-Speed Rotational Atherectomy) Can Achieve Larger Lumen Gain: Evaluation Using Optimal Frequency Domain Imaging
,”
J. Interv. Cardiol.
,
2019
, pp.
1
7
.10.1155/2019/9282876
32.
Mizutani
,
K.
,
Hara
,
M.
,
Nakao
,
K.
,
Yamaguchi
,
T.
,
Okai
,
T.
,
Nomoto
,
Y.
,
Kajio
,
K.
,
Kaneno
,
Y.
,
Yamazaki
,
T.
,
Ehara
,
S.
,
Kamimori
,
K.
,
Izumiya
,
Y.
, and
Yoshiyama
,
M.
,
2020
, “
Association Between Debulking Area of Rotational Atherectomy and Platform Revolution Speed—Frequency Domain Optical Coherence Tomography Analysis
,”
Catheter. Cardiovasc. Interv.
,
95
(
1
), pp.
E1
E7
.10.1002/ccd.28212
33.
Lovik
,
R. D.
,
Abraham
,
J. P.
, and
Sparrow
,
E. M.
,
2008
, “
Assessment of Possible Thermal damage of tissue Due to Atherectomy by Means of a Mechanical Debulking Device
,”
ASME
Paper No. SBC2008-191982.10.1115/SBC2008-191982
34.
Heuser
,
R. R.
,
Safian
,
R. O. B. E. R. T.
,
Bosiers
,
M. A. R. C.
, and
Turco
,
M. A.
,
2006
, “
Orbital Atherectomy
,”
Initial Experiences a New System Percutaneous Treatment Peripheral Vascular Stenosis.
Endovascular Today
, pp.
21
26
.https://evtoday.com/pdfs/EVT0906_01.pdf
35.
Helgeson
,
Z. L.
,
Jenkins
,
J. S.
,
Abraham
,
J. P.
, and
Sparrow
,
E. M.
,
2011
, “
Particle Trajectories and Agglomeration/Accumulation in Branching Arteries Subjected to Orbital Atherectomy
,”
Open Biomed. Eng. J.
,
5
(
1
), pp.
25
38
.10.2174/1874120701105010025
36.
Dodge
,
J. T.
,
Brown
,
B. G.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
,
1992
, “
Lumen Diameter of Normal Human Coronary Arteries. Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation
,”
Circulation
,
86
(
1
), pp.
232
246
.10.1161/01.CIR.86.1.232
37.
Claes
,
E.
,
Atienza
,
J. M.
,
Guinea
,
G. V.
,
Rojo
,
F. J.
Bernal
,
J. M.
,
Revuelta
,
J. M.
, and
Elices
,
M.
,
2010
, “
Mechanical Properties of Human Coronary Arteries
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology
, Buenos Aires, Argentina, Aug. 31–Sept. 4, pp.
3792
3795
.10.1109/IEMBS.2010.5627560
38.
Vorp
,
D. A.
,
Schiro
,
B. J.
,
Ehrlich
,
M. P.
,
Juvonen
,
T. S.
,
Ergin
,
M. A.
, and
Griffith
,
B. P.
,
2003
, “
Effect of Aneurysm on the Tensile Strength and Biomechanical Behavior of the Ascending Thoracic Aorta
,”
Ann. Thorac. Surg.
,
75
(
4
), pp.
1210
1214
.10.1016/S0003-4975(02)04711-2
39.
Iliopoulos
,
D. C.
,
Kritharis
,
E. P.
,
Giagini
,
A. T.
,
Papadodima
,
S. A.
, and
Sokolis
,
D. P.
,
2009
, “
Ascending Thoracic Aortic Aneurysms Are Associated With Compositional Remodeling and Vessel Stiffening but Not Weakening in Age-Matched Subjects
,”
J. Thorac. Cardiovasc. Surg.
,
137
(
1
), pp.
101
109
.10.1016/j.jtcvs.2008.07.023
40.
Reisman
,
M.
,
Shuman
,
B. J.
, and
Harms
,
V.
,
1998
, “
Analysis of Heat Generation During Rotational Atherectomy Using Different Operational Techniques
,”
Catheter. Cardiovas. Diagn.
,
44
(
4
), pp.
453
455
.10.1002/(SICI)1097-0304(199808)44:4<453::AID-CCD21>3.0.CO;2-I
41.
Scott
,
H. A.
,
Archuleta
,
A.
, and
Splinter
,
R.
,
2009
, “
Calcified Lesion Modeling for Excimer Laser Ablation
,”
Photonics North 2009
, Vol.
7386
,
SPIE
, pp.
58
64
.10.1117/12.839683
42.
Song
,
X.
,
Adachi
,
T.
,
Kawase
,
Y.
,
Kimura
,
T.
, and
Saito
,
N.
,
2022
, “
Efficacy of the Wolverine Cutting Balloon on a Circumferential Calcified Coronary Lesion: Bench Test Using a Three-Dimensional Printer and Computer Simulation With the Finite Element Method
,”
Cardiovasc. Interv. Ther.
,
37
(
1
), pp.
78
88
.10.1007/s12928-020-00739-2
43.
Kawase
,
Y.
,
Saito
,
N.
,
Watanabe
,
S.
,
Bao
,
B.
,
Yamamoto
,
E.
,
Watanabe
,
H.
,
Higami
,
H.
,
Matsuo
,
H.
,
Ueno
,
K.
, and
Kimura
,
T.
,
2014
, “
Utility of a Scoring Balloon for a Severely Calcified Lesion: Bench Test and Finite Element Analysis
,”
Cardiovasc. Interv. Ther.
,
29
(
2
), pp.
134
139
.10.1007/s12928-013-0232-6
44.
Chisena
,
R. S.
,
Sengenberger
,
J.
,
Shih
,
A. J.
, and
Gurm
,
H.
,
2021
, “
Novel Preclinical Method for Evaluating the Efficacy of a Percutaneous Treatment in Human Ex Vivo Calcified Plaque
,”
Med. Biol. Eng. Comput.
,
59
(
4
), pp.
799
811
.10.1007/s11517-021-02334-w
46.
Bostonscientific
,
2014
, “
Rotablator Rotational Atherectomy System Reference Guide
,” Bostonscientific, accessed Oct. 20, 2023, https://www.bostonscientific.com/content/dam/bostonscientific/Interventional%20Cardiology/portfolio-group/Plaque-Modification/Rotablator-System-Reference-Guide_IC-193906-AA.pdf
You do not currently have access to this content.