Abstract

Carpal tunnel syndrome and tendonitis are two common upper extremity cumulative trauma disorders (CTD) related to repetitive and forceful activities in industrial environments. Reducing the muscular force during activities such as the operation of a pistol grip hand tool could result in lower incidence of CTDs. The objective of this research was to reduce the muscular contribution to the grip force using an active grasp assist orthosis system. A novel soft, pneumatic grasp assistive device was designed to augment the users' strength during operation of pistol grip hand tool. The optimized design was fabricated using rapid prototyping. Device effectiveness was quantified by measuring muscle activity and grip force during an in vivo study of a common industrial activity. Nine subjects experienced with power tools employed by an automobile manufacturer installed 18 fasteners using a pistol grip DC tool with and without the grasp assistive device. Surface electromyography (sEMG) was used to measure the activity of four muscles commonly associated with grasping. The grasp assist significantly reduced the mean, combined, normalized muscle activity by 18% (p<0.05). Muscle activation results were contextualized using the revised strain index (RSI). The grasp assistive device trial yielded a significantly lower mean RSI value than the typical trial by 13% (p<0.05). Using an active grasp assist orthosis could reduce the incidence of CTDs in able bodied industrial workers using DC hand tools. The device used a unique design of sinusoidal bellows oriented at 45 deg to the plane of symmetry that yielded higher force output and a lower bending ratio and lower input pressure with acceptable device rigidity and strength.

References

1.
De Krom
,
M. C. T. F. M.
,
Knipschild
,
P. G.
,
Kester
,
A. D. M.
,
Thijs
,
C. T.
,
Boekkooi
,
P. F.
, and
Spaans
,
F.
,
1992
, “
Carpal Tunnel Syndrome: Prevalence in the General Population
,”
J. Clin. Epidemiol.
,
45
(
4
), pp.
373
376
.10.1016/0895-4356(92)90038-O
2.
Armstrong
,
T. J.
,
Fine
,
L. J.
,
Goldstein
,
S. A.
,
Lifshitz
,
Y. R.
, and
Silverstein
,
B. A.
,
1987
, “
Ergonomics Considerations in Hand and Wrist Tendinitis
,”
J. Hand Surg. Am.
,
12
(
5
), pp.
830
837
.10.1016/S0363-5023(87)80244-7
3.
Silverstein
,
B. A.
,
Fine
,
L. J.
, and
Armstrong
,
T. J.
,
1986
, “
Hand Wrist Cumulative Trauma Disorders in Industry
,”
Br. J. Ind. Med.
,
43
(
11
), pp.
779
784
.10.1136/oem.43.11.779
4.
Statistics Canada
,
2016
, “
Employment by Industry, Annual
,” Table 14-10-0202-01, Statistics Canada, Ottawa, ON, Canada.
5.
Bureau of Labor Statistics,
2017
, “
Employment by Major Industry Sector
,” United States Department of Labor, Washington, DC, accessed July 20, 2019, https://www.bls.gov/emp/tables/employment-by-major-industry-sector.htm
6.
Silverstein
,
B. A.
,
Fine
,
L. J.
, and
Armstrong
,
T. J.
,
1987
, “
Occupational Factors and Carpal Tunnel Syndrome
,”
Am. J. Ind. Med
,
11
(
3
), pp.
343
358
.10.1002/ajim.4700110310
7.
Kruger
,
V. L.
,
Kraft
,
G. H.
,
Deitz
,
J. C.
,
Ameis
,
A.
, and
Polissar
,
L.
,
1991
, “
Carpal Tunnel Syndrome: Objective Measures and Splint Use
,”
Arch. Phys. Med. Rehabil.
,
72
(
7
), pp.
517
520
.https://pubmed.ncbi.nlm.nih.gov/2059127/
8.
Johansson
,
L.
,
Björing
,
G.
, and
Hägg
,
G. M.
,
2004
, “
The Effect of Wrist Orthoses on Forearm Muscle Activity
,”
Appl. Ergon.
,
35
(
2
), pp.
129
136
.10.1016/j.apergo.2003.11.004
9.
Bulthaup
,
S.
,
Cipriani
,
D. J.
, and
Thomas
,
J. J.
,
1999
, “
An Electromyography Study of Wrist Extension Orthoses and Upper-Extremity Function
,”
Am. J. Occup. Ther.
,
53
(
5
), pp.
434
440
.10.5014/ajot.53.5.434
10.
Ferrigno
,
I. S. V.
,
Cliquet
,
A.
,
Magna
,
L. A.
, and
Zoppi Filho
,
A.
,
2009
, “
Electromyography of the Upper Limbs During Computer Work: A Comparison of 2 Wrist Orthoses in Healthy Adults
,”
Arch. Phys. Med. Rehabil.
,
90
(
7
), pp.
1152
1158
.10.1016/j.apmr.2009.01.016
11.
Diftler
,
M.
,
Ihrke
,
C.
,
Bridgwater
,
L. B.
,
Davis
,
D. R.
,
Linn
,
D.
,
Laske
,
E. A.
,
Ensley
,
K.
, and
Lee
,
J.
,
2014
, “
RoboGlove—A Robonaut Derived Multipurpose Assistive Device
,”
International Conference on Robotics and Automation
, Hong Kong, China, May 31–June 7, pp.
78
84
.https://ntrs.nasa.gov/citations/20140005956
12.
Nilsson
,
M.
,
Ingvast
,
J.
,
Wikander
,
J.
, and
Holst
,
H. V.
,
2012
, “
The Soft Extra Muscle System for Improving the Grasping Capability in Neurological Rehabilitation
,” IEEE-EMBS Conference on Biomedical Engineering and Science (
IECBES 2012
), Langkawi, Malaysia, Dec. 17–19, pp.
412
417
.10.1109/IECBES.2012.6498090
13.
Kang
,
B. B.
,
In
,
H.
, and
Cho
,
K.
,
2012
, “
Force Transmission in Joint-Less Tendon Driven Wearable Robotic Hand
,”
12th International Conference on Control, Automation and Systems
, Jeju, Korea, Oct. 17–21, pp.
1853
1858
.https://ieeexplore.ieee.org/document/6393148?arnumber=6393148
14.
Arifin
,
F.
, and
Azharuddin
,
A.
,
2013
, “
The Excellences of Exoskeletons for Medical Equipment
,”
AUSTENIT
,
5
(
1
), pp.
35
38
.10.5281/zenodo.4546281
15.
Gorissen
,
B.
,
Reynaerts
,
D.
,
Konishi
,
S.
,
Yoshida
,
K.
,
Kim
,
J. W.
, and
De Volder
,
M.
,
2017
, “
Elastic Inflatable Actuators for Soft Robotic Applications
,”
Adv. Mater.
,
29
(
43
), p.
1604977
.10.1002/adma.201604977
16.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and at-Home Rehabilitation
,”
Rob. Auton. Syst
,
73
, pp.
135
143
.10.1016/j.robot.2014.08.014
17.
Yap
,
H. K.
,
Ng
,
H. Y.
, and
Yeow
,
C.-H.
,
2016
, “
High-Force Soft Printable Pneumatics for Soft Robotic Applications
,”
Soft Robot.
,
3
(
3
), pp.
144
158
.10.1089/soro.2016.0030
18.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.10.1002/adfm.201303288
19.
Yap
,
H. K.
,
Lim
,
J.
,
Nasrallah
,
H. F.
,
Goh
,
J. C. H.
, and
Yeow
,
R. C. H.
,
2015
, “
A Soft Exoskeleton for Hand Assistive and Rehabilitation Application Using Pneumatic Actuators With Variable Stiffness
,”
Proceedings of International Conference on Robotics and Automation
, Seattle, WA, May 26–30, pp.
4967
4972
.10.1109/ICRA.2015.7139889
20.
Oh
,
S.
, and
Radwin
,
R. G.
,
1993
, “
Pistol Grip Power Tool Handle and Trigger Size Effects on Grip Exertions and Operator Preference
,”
Human Factors
,
35
(
3
), pp.
551
569
.10.1177/001872089303500311
21.
Yap
,
H. K.
,
Lim
,
J. H.
,
Nasrallah
,
F.
, and
Yeow
,
C.-H.
,
2017
, “
Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors
,”
Front. Neurosci.
,
11
, pp.
1
14
.10.3389/fnins.2017.00547
22.
Shahzad
,
M.
,
Kamran
,
A.
,
Siddiqui
,
M. Z.
, and
Farhan
,
M.
,
2015
, “
Mechanical Characterization and FE Modelling of a Hyperelastic Material
,”
Mater. Res
,
18
(
5
), pp.
918
924
.10.1590/1516-1439.320414
23.
Reppel
,
T.
, and
Weinberg
,
K.
,
2018
, “
Experimental Determination of Elastic and Rupture Properties of Printed Ninjaflex
,”
Tech. Mech.
,
38
, p.
1
.10.24352/UB.OVGU-2018-010
24.
Delagi
,
E. F.
,
Perotto
,
A. O.
,
Iazzetti
,
J.
, and
Morrison
,
D.
,
2011
,
Anatomical Guide for the Electromyographer
,
Charles C Thomas Publisher
,
Fifth. Springfield, IL
.
25.
Winkel
,
J.
,
Mathiassen
,
S. E.
, and
Hägg
,
G. M.
,
1995
, “
Normalization of Upper Trapezius EMG Amplitude in Ergonomic Studies
,”
J. Electromyogr. Kinesiol.
,
5
(
4
), pp.
195
196
.10.1016/1050-6411(96)85581-7
26.
De Luca
,
C. J.
,
Donald Gilmore
,
L.
,
Kuznetsov
,
M.
, and
Roy
,
S. H.
,
2010
, “
Filtering the Surface EMG Signal: Movement Artifact and Baseline Noise Contamination
,”
J. Biomech.
,
43
(
8
), pp.
1573
1579
.10.1016/j.jbiomech.2010.01.027
27.
Burden
,
A.
, and
Bartlett
,
R.
,
1999
, “
Normalisation of EMG Amplitude: An Evaluation and Comparison of Old and New Methods
,”
Med. Eng. Phys.
,
21
(
4
), pp.
247
257
.10.1016/S1350-4533(99)00054-5
28.
Garg
,
A.
,
Moore
,
J. S.
, and
Kapellusch
,
J. M.
,
2017
, “
The Revised Strain Index: An Improved Upper Extremity Exposure Assessment Model
,”
Ergonomics
,
60
(
7
), pp.
912
922
.10.1080/00140139.2016.1237678
29.
PolygerinosWang
,
P.
,
Overvelde
,
Z. J.
,
Galloway
,
K. C.
,
Wood
,
R.
,
Bertoldi
,
J. K.
, and
Walsh
,
C. J.
,
2015
, “
Modeling of Soft Fiber-Reinforced Bending Actuators
,”
IEEE Transactions on Robotics
, 31(3), pp.
778
789
.10.1109/TRO.2015.2428504
30.
Zhao
,
H.
,
Li
,
Y.
,
Elsamadisi
,
A.
, and
Shepherd
,
R.
,
2015
, “
Scalable Manufacturing of High Force Wearable Soft Actuators
,”
Extrem. Mech. Lett.
,
3
, pp.
89
104
.10.1016/j.eml.2015.02.006
31.
Jansen
,
C. W.
,
Olson
,
S. L.
, and
Hasson
,
S. M.
,
1997
, “
The Effect of Use of a Wrist Orthosis During Functional Activities on Surface Electromyography of the Wrist Extensors in Normal Subjects
,”
J. Hand Ther.
,
10
(
4
), pp.
283
289
.10.1016/S0894-1130(97)80043-9
32.
Bano
,
F.
,
Mallick
,
Z.
, and
Khan
,
A. A.
,
2016
, “
The Effect of Grip Force, Stroke Rotation and Frequency on Discomfort for a Torqueing Tasks
,”
Work
,
53
(
4
), pp.
691
708
.10.3233/WOR-152146
33.
Hoozemans
,
M. J. M.
, and
Van Dieën
,
J. H.
,
2005
, “
Prediction of Handgrip Forces Using Surface EMG of Forearm Muscles
,”
J. Electromyogr. Kinesiol.
,
15
(
4
), pp.
358
366
.10.1016/j.jelekin.2004.09.001
34.
Barański
,
R.
, and
Kozupa
,
A.
,
2014
, “
Hand grip-EMG Muscle Response
,”
Acta Phys. Pol. A
,
125
(
4A
), pp.
A-7
10
.10.12693/APhysPolA.125.A-7
35.
Palmer
,
K. T.
,
Harris
,
E. C.
, and
Coggon
,
D.
,
2006
, “
Carpal Tunnel Syndrome and Its Relation to Occupation: A Systematic Literature Review
,”
Occup. Med.
,
57
(
1
), pp.
57
66
.10.1093/occmed/kql125
You do not currently have access to this content.