Right ventricular (RV) dysfunction has limited the effectiveness of mechanical circulatory support (MCS) therapy in some heart failure (HF) patients. Intravascular pumps can provide adequate circulatory support without the need for extensive operations. The development of an intravascular right ventricular assist device (RVAD), called the cavo-arterial pump (CAP), is presented. Two prototypes of the CAP were developed to demonstrate the feasibility of providing adequate pulmonary support and to demonstrate the feasibility of using axial magnetic couplings for contactless torque transmission from the motor shaft to the pump impeller. The CAP utilizing a direct drive mechanism produced a maximum pressure of 100 mm Hg and a maximum flow of 2.25 L/min when operated at 24 kRPM. When a magnetic drive mechanism was used, the overall flowrate decreased due to a loss in torque transmission. The magnetic drive CAP was able to operate up to 18.5 kRPM and produce a maximum flowrate of 1.35 L/min and a maximum pressure difference of 40 mm Hg. These results demonstrate that the CAP produces sufficient output for partial circulatory support of the pulmonary circulation, and that axial magnetic couplings can help to eliminate the sealing system needed to isolate the miniature motor and bearings from blood contact.

References

1.
Dang
,
N. C.
,
Topkara
,
V. K.
,
Mercando
,
M.
,
Kay
,
J.
,
Kruger
,
K. H.
,
Aboodi
,
M. S.
,
Oz
,
M. C.
, and
Naka
,
Y.
,
2006
, “
Right Heart Failure After Left Ventricular Assist Device Implantation in Patients With Chronic Congestive Heart Failure
,”
J. Heart Lung Transplant.
,
25
(
1
), pp.
1
6
.
2.
Patel
,
N. D.
,
Weiss
,
E. S.
,
Schaffer
,
J.
,
Ullrich
,
S. L.
,
Rivard
,
D. C.
,
Shah
,
A. S.
,
Russell
,
S. D.
, and
Conte
,
J. V.
,
2008
, “
Right Heart Dysfunction After Left Ventricular Assist Device Implantation: A Comparison of the Pulsatile HeartMate I and Axial-Flow HeartMate II Devices
,”
Ann. Thorac. Surg.
,
86
(
3
), pp.
832
840
; discussion 832–840.
3.
Bernhardt
,
A. M.
,
De By
,
T. M.
,
Reichenspurner
,
H.
, and
Deuse
,
T.
,
2015
, “
Isolated Permanent Right Ventricular Assist Device Implantation With the HeartWare Continuous-Flow Ventricular Assist Device: First Results From the European Registry for Patients With Mechanical Circulatory Support
,”
Eur. J. Cardiothorac. Surg.
,
48
(
1
), pp.
158
162
.
4.
Potapov
,
E.
,
Schweiger
,
M.
,
Vierecke
,
J.
,
Dandel
,
M.
,
Stepanenko
,
A.
,
Kukucka
,
M.
,
Jurmann
,
B.
,
Hetzer
,
R.
, and
Krabatsch
,
T.
,
2012
, “
Discontinuation of HeartWare RVAD Support Without Device Removal in Chronic BIVAD Patients
,”
ASAIO J.
,
58
(
1
), pp.
15
18
.
5.
Stretch
,
R.
,
Sauer
,
C. M.
,
Yuh
,
D. D.
, and
Bonde
,
P.
,
2014
, “
National Trends in the Utilization of Short-Term Mechanical Circulatory Support: Incidence, Outcomes, and Cost Analysis
,”
J. Am. Coll. Cardiol.
,
64
(
14
), pp.
1407
1415
.
6.
Kapur
,
N. K.
,
Paruchuri
,
V.
,
Korabathina
,
R.
,
Al-Mohammdi
,
R.
,
Mudd
,
J. O.
,
Prutkin
,
J.
,
Esposito
,
M.
,
Shah
,
A.
,
Kiernan
,
M. S.
, and
Sech
,
C.
,
2011
, “
Effects of a Percutaneous Mechanical Circulatory Support Device for Medically Refractory Right Ventricular Failure
,”
J. Heart Lung Transplant.
,
30
(
12
), pp.
1360
1367
.
7.
Cheung
,
A. W.
,
White
,
C. W.
,
Davis
,
M. K.
, and
Freed
,
D. H.
,
2014
, “
Short-Term Mechanical Circulatory Support for Recovery From Acute Right Ventricular Failure: Clinical Outcomes
,”
J. Heart Lung Transplant.
,
33
(
8
), pp.
794
799
.
8.
Punnoose
,
L.
,
Burkhoff
,
D.
,
Rich
,
S.
, and
Horn
,
E. M.
,
2012
, “
Right Ventricular Assist Device in End-Stage Pulmonary Arterial Hypertension: Insights From a Computational Model of the Cardiovascular System
,”
Prog. Cardiovasc. Dis.
,
55
(
2
), pp.
234
243.e232
.
9.
Butler
,
K. C.
,
Moise
,
J. C.
, and
Wampler
,
R. K.
,
1990
, “
The Hemopump—A New Cardiac Prothesis Device
,”
IEEE Trans. Biomed. Eng.
,
37
(
2
), pp.
193
196
.
10.
Rosarius
,
N.
,
Siess
,
T.
,
Reul
,
H.
, and
Rau
,
G.
,
1994
, “
Concept, Realization, and First In Vitro Testing of an Intraarterial Microaxial Blood Pump With an Integrated Drive Unit
,”
Artif. Organs
,
18
(
7
), pp.
512
516
.
11.
Siess
,
T.
,
Nix
,
C.
, and
Menzler
,
F.
,
2001
, “
From a Lab Type to a Product: A Retrospective View on Impella's Assist Technology
,”
Artif. Organs
,
25
(
5
), pp.
414
421
.
12.
Stepanoff
,
A. J.
,
1957
,
Centrifugal and Axial Flow Pumps: Theory, Design, and Application
,
Krieger Publishing Company
, Malabar, FL.
13.
Reul
,
H.
,
1994
, “
Technical Requirements and Limitations of Miniaturized Axial Flow Pumps for Circulatory Support
,”
Cardiology
,
84
(
3
), pp.
187
193
.
14.
Clifton
,
W.
,
Benavides
,
O.
,
Songkakul
,
T.
,
Heuring
,
J.
,
Hertzog
,
B.
, and
Delgado
,
R.
,
2015
, “
Feasibility of a Long-Term Transfemoral Power Lead for Aortix, a Novel Intravascular Blood Pump
,”
J. Heart Lung Transplant.
,
34
(
4
), p.
S177
.
15.
Waters
,
B. H.
,
Smith
,
J. R.
, and
Bonde
,
P.
,
2014
, “
Innovative Free-Range Resonant Electrical Energy Delivery System (FREE-D System) for a Ventricular Assist Device Using Wireless Power
,”
ASAIO J.
,
60
(
1
), pp.
31
37
.
You do not currently have access to this content.