Tremor, characterized by involuntary and rhythmical movements, is the most common movement disorder. Tremor can have peripheral and central oscillatory components which properly assessed may improve diagnostics. A magnetic resonance (MR)-safe haptic wrist manipulator enables simultaneous measurement of proprioceptive reflexes (peripheral components) and brain activations (central components) through functional magnetic resonance imaging (fMRI). The presented design for an MR-safe haptic wrist manipulator has electrohydraulic closed-circuit actuation, optical position and force sensing, and consists of exclusively nonconductive and magnetically compatible materials inside the MR-environment (Zone IV). The MR-safe hydraulic actuator, a custom-made plastic vane motor, is connected to the magnetic parts and electronics located in the shielded control room (Zone III) via hydraulic hoses and optical fibers. Deliberate internal leakage provides backdriveability, damping, and circumvents friction. The manipulator is completely MR-safe and therefore operates safely in any MR-environment while ensuring fMRI imaging quality. Undesired external leakage in the actuator prevented the use of prepressure, limiting the control bandwidth. The compact end effector design fits in the MR-scanner, is easily setup, and can be clamped to the MR-scanner bed. This enables use of the manipulator with the subject at the optimal fMRI location and allows it to be setup quickly, saving costly MR-scanner time. The actuation and sensor solutions performed well inside the MR-environment and did not deteriorate image quality, which allows for various motor control experiments. Enabling prepressure by carrying out the recommendations on fabrication and sealing should improve the bandwidth and fulfill the requirements for proprioceptive reflex identification.

References

1.
Chou
,
K. L.
,
Grube
,
S.
, and
Patil
,
P. G.
,
2012
,
Deep Brain Stimulation: A New Life for People With Parkinson's, Dystonia, and Essential Tremor
,
Demos Medical Publishing
, New York.
2.
Wenning
,
G. K.
,
Kiechl
,
S.
,
Seppi
,
K.
,
Müller
,
J.
,
Högl
,
B.
,
Saletu
,
M.
,
Rungger
,
G.
,
Gasperi
,
A.
,
Willeit
,
J.
, and
Poewe
,
W.
,
2005
, “
Prevalence of Movement Disorders in Men and Women Aged 50-89 Years (Bruneck Study Cohort): A Population-Based Study
,”
Lancet Neurol.
,
4
(
12
), pp.
815
820
.
3.
Deuschl
,
G.
,
Bain
,
P.
, and
Brin
,
M.
,
1998
, “
Consensus Statement of the Movement Disorder Society on Tremor
,”
Mov. Disord.
,
13
(
S3
), pp.
2
23
.
4.
Elble
,
R. J.
,
1996
, “
Central Mechanisms of Tremor
,”
J. Clin. Neurophysiol.
,
13
(
2
), pp.
133
144
.
5.
Grimaldi
,
G.
, and
Manto
,
M.
,
2008
,
Tremor: From Pathogenesis to Treatment
,
Morgan & Claypool
, San Rafael, CA.
6.
Kearney
,
R. E.
,
Stein
,
R. B.
, and
Parameswaran
,
L.
,
1997
, “
Identification of Intrinsic and Reflex Contributions to Human Ankle Stiffness Dynamics
,”
IEEE Trans. Biomed. Eng.
,
44
(
6
), pp.
493
504
.
7.
Mirbagheri
,
M. M.
,
Barbeau
,
H.
, and
Kearney
,
R. E.
,
2000
, “
Intrinsic and Reflex Contributions to Human Ankle Stiffness: Variation With Activation Level and Position
,”
Exp. Brain Res.
,
135
(
4
), pp.
423
436
.
8.
van der Helm
,
F. C. T.
,
Schouten
,
A. C.
,
de Vlugt
,
E.
, and
Brouwn
,
G. G.
,
2002
, “
Identification of Intrinsic and Reflexive Components of Human Arm Dynamics During Postural Control
,”
J. Neurosci. Methods
,
119
(
1
), pp.
1
14
.
9.
Tsekos
,
N. V.
,
Christoforou
,
E.
, and
Özcan
,
A.
,
2008
, “
A General-Purpose MR-Compatible Robotic System
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
3
), pp.
51
58
.
10.
Chinzei
,
K.
,
Kikinis
,
R.
, and
Jolesz
,
F. A.
,
1999
, “
MR Compatibility of Mechatronic Devices: Design Criteria
,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI
, Springer, Berlin, pp.
1020
1030
.
11.
Elhawary
,
H.
,
Zivanovic
,
A.
,
Rea
,
M.
,
Davies
,
B. L.
,
Besant
,
C.
,
Young
,
I.
, and
Lamperth
,
M. U.
,
2008
, “
A Modular Approach to MRI-Compatible Robotics
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
3
), pp.
35
41
.
12.
Flueckiger
,
M.
,
Bullo
,
M.
,
Chapuis
,
D.
,
Gassert
,
R.
, and
Perriard
,
Y.
,
2005
, “
fMRI Compatible Haptic Interface Actuated With Traveling Wave Ultrasonic Motor
,”
IEEE
Industry Applications Conference, 40th IAS Annual Meeting
, Hong Kong, China, Oct. 2–6, pp.
2075
2082
.
13.
Yamamoto
,
A.
,
Ichiyanagi
,
K.
,
Higuchi
,
T.
,
Imamizu
,
H.
,
Gassert
,
R.
,
Ingold
,
M.
,
Sache
,
L.
, and
Bleuler
,
H.
,
2005
, “
Evaluation of MR-Compatibility of Electrostatic Linear Motor
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
3658
3663
.
14.
Yu
,
N.
,
Murr
,
W.
,
Blickenstorfer
,
A.
,
Kollias
,
S.
, and
Riener
,
R.
,
2007
, “
An fMRI Compatible Haptic Interface With Pneumatic Actuation
,”
IEEE Tenth International Conference on Rehabilitation Robotics
(
ICORR
), Noordwijk, The Netherlands, June 13–15, pp.
714
720
.
15.
Stoianovici
,
D.
,
Patriciu
,
A.
,
Petrisor
,
D.
,
Mazilu
,
D.
, and
Kavoussi
,
L.
,
2007
, “
A New Type of Motor: Pneumatic Step Motor
,”
IEEE/ASME Trans. Mechatron.
,
12
(
1
), pp.
98
106
.
16.
Diedrichsen
,
J.
,
Hashambhoy
,
Y.
,
Rane
,
T.
, and
Shadmehr
,
R.
,
2005
, “
Neural Correlates of Reach Errors
,”
J. Neurosci.
,
25
(
43
), pp.
9919
9931
.
17.
Suminski
,
A. J.
,
Zimbelman
,
J. L.
, and
Scheidt
,
R. A.
,
2007
, “
Design and Validation of a MR-Compatible Pneumatic Manipulandum
,”
J. Neurosci. Methods
,
163
(
2
), pp.
255
266
.
18.
Gassert
,
R.
,
Moser
,
R.
,
Burdet
,
E.
,
Bleuler
,
H.
,
Member
,
S.
,
Moser
,
R.
, and
Burdet
,
E.
,
2006
, “
MRI/fMRI-Compatible Robotic System With Force Feedback for Interaction With Human Motion
,”
IEEE/ASME Trans. Mechatron.
,
11
(
2
), pp.
216
224
.
19.
Yu
,
N.
,
Estévez
,
N.
,
Hepp-Reymond
,
M. C.
,
Kollias
,
S. S.
, and
Riener
,
R.
,
2011
, “
FMRI Assessment of Upper Extremity Related Brain Activation With an MRI-Compatible Manipulandum
,”
Int. J. Comput. Assist. Radiol. Surg.
,
6
(
3
), pp.
447
455
.
20.
Khanicheh
,
A.
,
Muto
,
A.
,
Triantafyllou
,
C.
,
Weinberg
,
B.
,
Astrakas
,
L.
,
Tzika
,
A.
, and
Mavroidis
,
C.
,
2006
, “
fMRI-Compatible Rehabilitation Hand Device
,”
J. Neuroeng. Rehabil.
,
3
(
1
), pp.
1
11
.
21.
Chapuis
,
D.
,
Gassert
,
R.
,
Ganesh
,
G.
,
Burdet
,
E.
, and
Bleuler
,
H.
,
2006
, “
Investigation of a Cable Transmission for the Actuation of MR Compatible Haptic Interfaces
,”
The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Pisa, Italy, Feb. 20–22, pp.
426
431
.
22.
Christoforou
,
E. G.
,
Tsekos
,
N. V.
, and
Özcan
,
A.
,
2006
, “
Design and Testing of a Robotic System for MR Image-Guided Interventions
,”
J. Intell. Rob. Syst.
,
47
(
2
), pp.
175
196
.
23.
Schaefers
,
G.
,
2008
, “
Testing MR Safety and Compatibility
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
3
), pp.
23
27
.
24.
ASTM
,
2008
, “
Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment
,” ASTM International, West Conshohocken, PA, Standard No.
F2503-08
.https://www.astm.org/DATABASE.CART/HISTORICAL/F2503-08.htm
25.
Kanal
,
E.
,
Barkovich
,
A. J.
,
Bell
,
C.
,
Borgstede
,
J. P.
,
Bradley
,
W. G.
,
Froelich
,
J. W.
,
Gilk
,
T.
,
Gimbel
,
J. R.
,
Gosbee
,
J.
,
Kuhni-Kaminski
,
E.
,
Lester
,
J. W.
,
Nyenhuis
,
J.
,
Parag
,
Y.
,
Schaefer
,
D. J.
,
Sebek-Scoumis
,
E. A.
,
Weinreb
,
J.
,
Zaremba
,
L. A.
,
Wilcox
,
P.
,
Lucey
,
L.
,
Sass
,
N.
, and
the ACR Blue Ribbon Panel on MR Safety
,
2007
, “
ACR Guidance Document for Safe MR Practices: 2007
,”
Am. J. Roentgenol.
,
188
(
6
), pp.
1447
1474
.
26.
Schouten
,
A. C.
,
de Vlugt
,
E.
,
van Hilten
,
J. J. B.
, and
van der Helm
,
F. C. T.
,
2006
, “
Design of a Torque-Controlled Manipulator to Analyse the Admittance of the Wrist Joint
,”
J. Neurosci. Methods
,
154
(
1–2
), pp.
134
141
.
27.
Tsekos
,
N. V.
,
Ozcan
,
A.
, and
Christoforou
,
E.
,
2005
, “
A Prototype Manipulator for Magnetic Resonance-Guided Interventions Inside Standard Cylindrical Magnetic Resonance Imaging Scanners
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
972
980
.
28.
Williams
,
D.
,
2001
,
Robot for Wrist Rehabilitation
,
MIT
, Cambridge, MA.
29.
Gassert
,
R.
,
Chapuis
,
D.
,
Bleuler
,
H.
, and
Burdet
,
E.
,
2008
, “
Sensors for Applications in Magnetic Resonance Environments
,”
IEEE/ASME Trans. Mechatron.
,
13
(
3
), pp.
335
344
.
30.
Perreault
,
E. J.
,
Kirsch
,
R. F.
, and
Crago
,
P. E.
,
2001
, “
Effects of Voluntary Force Generation on the Elastic Components of Endpoint Stiffness
,”
Exp. Brain Res.
,
141
(
3
), pp.
312
323
.
31.
Burdet
,
E.
,
Gassert
,
R.
,
Gowrishankar
,
G.
,
Chapuis
,
D.
, and
Bleuler
,
H.
,
2006
, “
fMRI Compatible Haptic Interfaces to Investigate Human Motor Control
,”
Exp. Rob. IX
,
21
, pp.
25
34
.
32.
Yu
,
N.
,
Hollnagel
,
C.
,
Blickenstorfer
,
A.
,
Kollias
,
S. S.
, and
Riener
,
R.
,
2008
, “
Comparison of MRI-Compatible Mechatronic Systems With Hydrodynamic and Pneumatic Actuation
,”
IEEE/ASME Trans. Mechatron.
,
13
(
3
), pp.
268
277
.
33.
Hidler
,
J.
,
Mbwana
,
J.
, and
Zeffiro
,
T.
,
2005
, “
MRI Compatible Force Sensing System for Real-Time Monitoring of Wrist Moments During fMRI Testing
,”
Ninth International Conference on Rehabilitation Robotics
(
ICORR
), Chicago, IL, June 28–July 1, pp.
212
214
.
34.
Liu
,
J. Z.
,
Dai
,
T. H.
,
Elster
,
T. H.
,
Sahgal
,
V.
,
Brown
,
R. W.
, and
Yue
,
G. H.
,
2000
, “
Simultaneous Measurement of Human Joint Force, Surface Electromyograms, and Functional MRI-Measured Brain Activation
,”
J. Neurosci. Methods
,
101
(
1
), pp.
49
57
.
35.
Chapuis
,
D.
,
Gassert
,
R.
,
Sache
,
L.
,
Burdet
,
E.
, and
Bleuler
,
H.
,
2004
, “
Design of a Simple MRI/fMRI Compatible Force/Torque Sensor
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Sendai, Japan, Sept. 28–Oct. 2, pp.
2593
2599
.
36.
Hara
,
M.
,
Matthey
,
G.
,
Yamamoto
,
A.
,
Chapuis
,
D.
,
Gassert
,
R.
,
Bleuler
,
H.
, and
Higuchi
,
T.
,
2009
, “
Development of a 2-DOF Electrostatic Haptic Joystick for MRI/fMRI Applications
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
1479
1484
.
37.
Vlaar
,
M. P.
,
Mugge
,
W.
,
Groot
,
P. F. C.
,
Sharifi
,
S.
,
Bour
,
L. J.
,
van der Helm
,
F. C. T.
,
van Rootselaar
,
A.-F.
, and
Schouten
,
A. C.
,
2016
, “
Targeted Brain Activation Using an MR-Compatible Wrist Torque Measurement Device and Isometric Motor Tasks During Functional Magnetic Resonance Imaging
,”
Magn. Reson. Imaging
,
34
(6), pp. 795–802.
38.
Pintelon
,
R.
, and
Schoukens
,
J.
,
2001
,
System Identification: A Frequency Domain Approach
,
Wiley-IEEE Press
,
New York
.
39.
Tsekos
,
N. V.
,
Khanicheh
,
A.
,
Christoforou
,
E.
, and
Mavroidis
,
C.
,
2007
, “
Magnetic Resonance–Compatible Robotic and Mechatronics Systems for Image-Guided Interventions and Rehabilitation: A Review Study
,”
Annu. Rev. Biomed. Eng.
,
9
(
1
), pp.
351
387
.
40.
Rowe
,
J. B.
, and
Frackowiak
,
R. S. J.
,
1999
, “
The Impact of Brain Imaging Technology on Our Understanding of Motor Function and Dysfunction
,”
Curr. Opin. Neurobiol.
,
9
(
6
), pp.
728
734
.
41.
Gassert
,
R.
,
Burdet
,
E.
, and
Chinzei
,
K.
,
2008
, “
Opportunities and Challenges in MR-Compatible Robotics
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
3
), pp.
15
22
.
42.
Heeger
,
D. J.
, and
Ress
,
D.
,
2002
, “
What Does fMRI Tell Us About Neuronal Activity?
,”
Nat. Rev. Neurosci.
,
3
(
2
), pp.
142
151
.
You do not currently have access to this content.