While the majority of the total knees used today are of the cruciate retaining (CR) and cruciate substituting (PS) types, the results are not ideal in terms of satisfaction, function, and biomechanical parameters. It is proposed that a design which specifically substituted for the structures which provided stability could produce normal laxity behavior, which may be a path forward to improved outcomes. Stabilizing structures of the anatomic knee were identified under conditions of low and high axial loading. The upward slope of the anterior medial tibial plateau and the anterior cruciate was particularly important under all loading conditions. A guided motion design was formulated based on this data, and then tested in a simulating machine which performed an enhanced ASTM constraint test to determine stability and laxity. The guided motion design showed much closer neutral path of motion and laxity in anterior–posterior (AP) and internal–external rotation, compared with the PS design. Particular features included absence of paradoxical anterior sliding in early flexion, and lateral rollback in higher flexion. A total knee design which replicated the stabilizing structures of the anatomical knee is likely to provide more anatomical motion and may result in improved clinical outcomes.

References

1.
Lozano-Calderon
,
S. A.
,
Shen
,
J.
,
Doumato
,
D. F.
,
Greene
,
D. A.
, and
Zelicof
,
S. B.
,
2013
, “
Cruciate-Retaining vs Posterior-Substituting Inserts in Total Knee Arthroplasty: Functional Outcome Comparison
,”
J. Arthroplasty
,
28
(
2
), pp.
234
242
.
2.
Maratt
,
J. D.
,
Lee
,
Y.
,
Lyman
,
S.
, and
Westrich
,
G. H.
,
2015
, “
Predictors of Satisfaction Following Total Knee Arthroplasty
,”
J. Arthroplasty
,
30
(
7
), pp.
1142
1145
.
3.
Dennis
,
D. A.
,
Komistek
,
R. D.
,
Mahfouz
,
M. R.
,
Haas
,
B. D.
, and
Stiehl
,
J. B.
,
2003
, “
Multicenter Determination of In Vivo Kinematics After Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
416
, pp.
37
57
.
4.
Yue
,
B.
,
Varadarajan
,
K. M.
,
Moynihan
,
A. L.
,
Liu
,
F.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2011
, “
Kinematics of Medial Osteoarthritic Knees Before and After Posterior Cruciate Ligament Retaining Total Knee Arthroplasty
,”
J. Orthop. Res.
,
29
(
1
), pp.
40
46
.
5.
McClelland
,
A.
,
Feller
,
J. A.
,
Menz
,
H. B.
, and
Webster
,
H. B.
,
2014
, “
Patterns in the Knee Flexion-Extension Moment Profile During Stair Ascent and Descent in Patients With Total Knee Arthroplasty
,”
J. Biomech.
,
47
(
8
), pp.
1816
1821
.
6.
McClelland
,
J. A.
,
Webster
,
K.
,
Feller
,
J. A.
, and
Menz
,
H. B.
,
2010
, “
Knee Kinetics During Walking at Different Speeds in People Who Have Undergone Total Knee Replacement
,”
Gait Posture
,
32
(
2
), pp.
205
210
.
7.
Nakamura
,
S.
,
Sharma
,
A.
,
Nakamura
,
K.
,
Ikeda
,
N.
,
Zingde
,
S. M.
, and
Komistek
,
R. D.
,
2014
, “
Can Post-Cam Function be Replaced by Addition of a Third Condyle in PS TKA
,”
J. Arthroplasty
,
29
(
9
), pp.
1871
1876
.
8.
Pritchett
,
J. W.
,
2013
, “
A Comparison of the Noise Generated From Different Types of Knee Prostheses
,”
J. Knee Surg.
,
26
(
2
), pp.
101
104
.
9.
Pritchett
,
J. W.
,
2011
, “
Patients Prefer a Bicruciate-Retaining or the Medial Pivot Total Knee Prosthesis
,”
J. Arthoplasty
,
26
(
2
), pp.
224
228
.
10.
Zuiderbaan
,
H. A.
,
van der List
,
J. P.
,
Khamaisy
,
S.
,
Nawabi
,
D. H.
,
Thein
,
R.
,
Ishmael
,
C.
,
Paul
,
S.
, and
Pearle
,
A. D.
,
2017
, “
Unicompartmental Knee Arthroplasty Versus Total Knee Arthroplasty: Which Type of Artificial Joint do Patients Forget?
Knee Surg. Sports Traumatol. Arthrosc.
,
25
(3), pp. 681–686.
11.
Blaha
,
J. D.
, “
The Rationale for a Total Knee Implant That Confers Anteroposterior Stability Throughout Range of Motion
,”
J. Arthroplasty
,
19
(
4 Suppl. 1
), pp.
22
26
.
12.
Hofmann
,
A. A.
,
Tkach
,
T. K.
,
Evanich
,
C. J.
, and
Camargo
,
M. P.
,
2000
, “
Posterior Stabilization in Total Knee Arthroplasty With Use of an Ultracongruent Polyethylene Insert
,”
J. Arthroplasty
,
15
(
5
), pp.
576
583
.
13.
Hsieh
,
H. H.
, and
Walker
,
P. S.
,
1976
, “
Stabilizing Mechanisms of the Loaded and Unloaded Knee Joint
,”
Am. J. Bone Jt. Surg.
,
58
(
1
), pp.
87
93
.
14.
Markolf
,
K.
,
Graff-Radford
,
A.
, and
Amstutz
,
H.
,
1978
, “
In Vivo Knee Stability. A Quantitative Assessment Using an Instrumented Clinical Testing Apparatus
,”
Am. J. Bone Jt. Surg.
,
60-A
, pp.
664
674
.
15.
Shoemaker
,
S. C.
, and
Markolf
,
K. L.
,
1985
, “
Effects of Joint Load on the Stiffness and Laxity of Ligament-Deficient Knees
,”
J. Bone Jt. Surg.
,
67
(
1
), pp.
136
146
.
16.
Wang
,
C. J.
, and
Walker
,
P. S.
,
1974
, “
Rotatory Laxity of the Human Knee Joint
,”
Am. J. Bone Jt. Surg.
,
56
(
1
), pp.
161
170
.
17.
Beynonn
,
B. D.
,
Fleming
,
B. C.
,
Labovitch
,
R.
, and
Parsons
,
B.
,
2002
, “
Chronic Anterior Cruciate Ligament Deficiency is Associated With Increased Anterior Translation of the Tibia During the Transition From Non-Weightbearing to Weightbearing
,”
J. Orthop. Res.
,
20
(
2
), pp.
332
337
.
18.
Markolf
,
K.
,
Graff-Radford
,
A.
, and
Amstutz
,
H.
,
1978
, “
In Vivo Knee Stability. A Quantitative Assessment Using an Instrumented Clinical Testing Apparatus
,”
Am. J. Bone Jt. Surg.
,
60-A
(
5
), pp.
664
674
.
19.
Pinskerova
,
V.
,
Johal
,
P.
,
Nakagawa
,
S.
,
Sosna
,
A.
,
Williams
,
A.
,
Gedroyc
,
W.
, and
Freeman
,
M. A.
,
2004
, “
Does the Femur Roll-Back With Flexion?
Br. J. Bone Jt. Surg.
,
86B
(
6
), pp.
925
931
.
20.
Giffin
,
J. R.
,
Stabile
,
K. J.
,
Zantop
,
T.
,
Vogrin
,
T. M.
,
Woo
,
S. L.-Y.
, and
Harner
,
C. D.
,
2007
, “
Importance of Tibial Slope for Stability of the Posterior Cruciate Ligament-Deficient Knee
,”
Am. J. Sports Med.
,
35
(
9
), pp.
1443
1449
.
21.
Giffin
,
J. R.
,
Vogrin
,
T. M.
,
Zantop
,
T.
,
Woo
,
S. L.-Y.
, and
Harner
,
C. D.
,
2004
, “
Effects of Increasing Tibial Slope on the Biomechanics of the Knee
,”
Am. J. Sports Med.
,
32
(
2
), pp.
376
382
.
22.
Reynolds
,
R. J.
,
Walker
,
P. S.
, and
Buza
,
J.
,
2017
, “
Mechanism of Anterior-Posterior Stability of the Knee Joint Under Load-Bearing
,”
J. Biomech.
,
57
, pp.
39
45
.
23.
Lankester
,
B. J. A.
,
Cottam
,
H. L.
,
Pinskerova
,
V.
,
Eldridge
,
J. D. J.
, and
Freeman
,
M. A.
,
2008
, “
Variation in the Anatomy of the Tibial Plateau
,”
Bone Jt. J.
,
90-B
(
3
), pp.
330
333
.
24.
Walker
,
P. S.
, and
Sathasivam
,
P. S.
,
1999
, “
The Design of Guide Surfaces for Fixed-Bearing and Mobile-Bearing Knee Replacements
,”
J. Biomech.
,
32
(
1
), pp.
27
34
.
25.
Walker
,
P. S.
,
2014
, “
Application of a Novel Design Method for Knee Replacements to Achieve Normal Mechanics
,”
Knee
,
21
(
2
), pp.
353
358
.
26.
Chan
,
H. Y.
,
Walker
,
P. S.
,
Lerner
,
A.
,
Chaudhary
,
M.
, and
Bosco
,
J. A.
,
2016
, “
Design of Reverse Materials Resurfacing Implants for Mild-Moderate Medial Osteoarthritis of the Knee
,”
ASME J. Med. Devices
,
11
(
1
), p.
011004
.
27.
Walker
,
P. S.
,
Arno
,
S.
,
Borukhov
,
I.
, and
Bell
,
C. P.
,
2015
, “
Characterising Knee Motion and Laxity in a Testing Machine for Application to Total Knee Evaluation
,”
J. Biomech.
,
48
(
13
), pp.
3551
3558
.
28.
Gustke
,
K. A.
,
2014
, “
Soft-Tissue and Alignment Correction: The Use of Smart Trials in Total Knee Replacement
,”
Bone Jt. J.
,
96-B
(
11 Suppl. A
), pp.
78
83
.
29.
Meere
,
P. A.
,
Schneider
,
S.
, and
Walker
,
P. S.
,
2016
, “
Accuracy of Balancing at Total Knee Surgery Using an Instrumented Tibial Trial
,”
J. Arthroplasty
,
31
(
9
), pp.
1938
1942
.
30.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
C.
,
1986
, “
Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
(
6
), pp.
425
432
.
31.
Otake
,
N.
,
Chen
,
H.
,
Yao
,
X.
, and
Shoumura
,
S.
,
2007
, “
Morphologic Study of the Lateral and Medial Collateral Ligaments of the Human Knee
,”
Okajimas Folia Anat. Jpn.
,
83
(
4
), pp.
115
122
.
32.
Bergmann
,
G.
,
Bender
,
A.
,
Graichen
,
F.
,
Dymke
,
J.
,
Rohlmann
,
A.
,
Trepczynski
,
A.
,
Heller
,
M. O.
, and
Kutzner
,
I.
,
2014
, “
Standardized Loads Acting in Knee Implants
,”
PLOS ONE
,
9
(
1
), p.
e86035
.
33.
D'Lima
,
D. D.
,
Patil
,
S.
,
Steklov
,
N.
,
Chien
,
S.
, and
Colwell
,
C. W.
, Jr.
, “
In Vivo Knee Moments and Shear After Total Knee Arthroplasty
,”
J. Biomech.
,
40
(
Suppl. 1
), pp.
S11
S17
.
34.
ASTM
,
2008
, “
Determination of Total Knee Replacement Constraint
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM F1223-05
.https://www.astm.org/DATABASE.CART/HISTORICAL/F1223-05.htm
35.
Blaha
,
J. D.
,
Mancinelli
,
C. A.
,
Simons
,
W. H.
,
Kish
,
V. L.
, and
Thyagarajan
,
G.
,
2003
, “
Kinematics of the Human Knee Using an Open Chain Cadaver Model
,”
Clin. Orthop. Relat. Res.
,
410
, pp.
25
34
.
36.
Fitch
,
D.
,
Sedacki
,
K.
, and
Yang
,
Y.
,
2014
, “
Mid- to Long-Term Outcomes of a Medial-Pivot System for Primary Total Knee Replacement: A Systematic Review and Meta-Analysis
,”
Bone Joint Res.
,
3
(
10
), pp.
297
304
.
37.
Fritzsche
,
H.
,
Beyer
,
F.
,
Postler
,
A.
, and
Lutzner
,
J.
,
2017
, “
Different Intraoperative Kinematics, Stability, and Range of Motion Between Cruciate-Substituting Ultracongruent and Posterior-Stabilized Total Knee Arthroplasty
,”
Knee Surg. Sports Traumatol. Arthrosc.
, epub.
38.
Lutzner
,
J.
,
Beyer
,
F.
,
Dexel
,
J.
,
Fritzsche
,
H.
,
Lutzner
,
C.
, and
Kirschner
,
S.
,
2016
, “
No Difference in Range of Motion Between Ultracongruent and Posterior Stabilized Design in Total Knee Arthroplasty: A Randomized Controlled Trial
,”
Knee Surg. Sports Traumatol. Arthrosc.
, epub.
39.
Rajgopal
,
A.
,
Aggarwal
,
K.
,
Khurana
,
A.
,
Rao
,
A.
,
Vasdev
,
A.
, and
Pandit
,
H.
,
2017
, “
Gait Parameters and Functional Outcomes After Total Knee Arthroplasty Using Persona Knee System With Cruciate Retaining and Ultracongruent Knee Inserts
,”
J. Arthroplasty
,
32
(
1
), pp.
87
91
.
40.
Seedhom
,
B. B.
,
Longton
,
E. B.
,
Wright
,
V.
, and
Dowson
,
D.
,
1972
, “
Dimensions of the Knee
,”
Ann. Rheum. Dis.
,
31
(
1
), pp.
54
58
.
41.
Amiri
,
S.
,
Cooke
,
D. T.
,
Kim
,
I. Y.
, and
Wyss
,
U.
,
2006
, “
Mechanics of the Passive Knee Joint. Part 1: The Role of the Tibial Articular Surfaces in Guiding the Passive Motion
,”
Proc. Inst. Mech. Eng.
,
220
(
8
), pp.
813
822
.
42.
Amiri
,
S.
,
Cooke
,
D. T.
,
Kim
,
I. Y.
, and
Wyss
,
U.
,
2007
, “
Mechanics of the Passive Knee Joint. Part 2: Interaction Between the Ligaments and the Articular Surfaces in Guiding the Joint Motion
,”
Proc. Inst. Mech. Eng.
,
221
(
8
), pp.
821
832
.
43.
Amiri
,
S.
,
Cooke
,
D. T.
, and
Wyss
,
U. P.
,
2011
, “
Conceptual Design for Condylar Guiding Features of a Total Knee Replacement
,”
ASME J. Med. Devices
,
5
(
2
), p.
025001
.
44.
Liu
,
Y.-L.
,
Chen
,
W.-C.
,
Yeh
,
W. L.
,
McClean
,
C. J.
,
Huang
,
C. H.
,
Lin
,
K. J.
, and
Cheng
,
C. K.
,
2012
, “
Mimicking Anatomical Condylar Configuration Into Knee Prosthesis Could Improve Knee Kinematics After TKA—A Computational Simulation
,”
Clin. Biomech.
,
27
(
2
), pp.
176
181
.
45.
Floerkemeier
,
T.
,
Fosch
,
K. H.
,
Wachowski
,
M.
,
Kubein-Meesenburg
,
D.
,
Gezzu
,
R.
,
Faghanel
,
J.
,
Sturmer
,
K. M.
, and
Nagerl
,
H.
,
2011
, “
Physiologically Shaped Knee Arthroplasty Induces Natural Roll-Back
,”
Technol. Health Care
,
19
(
2
), pp.
91
102
.
46.
Mangudi
,
K.
,
Varadarajan
,
M.
,
Zumbrunn
,
T.
,
Rubash
,
H. E.
,
Malchau
,
H.
,
Li
,
G.
, and
Muratoglu
,
O. K.
,
2015
, “
Cruciate Retaining Implant With Biometric Articular Surface to Reproduce Activity Dependent Kinematics of the Normal Knee
,”
J. Arthroplasty
,
30
(
12
), pp.
2149
2153
.
47.
Zumbrunn
,
T. Z.
,
Varadarajan
,
K. M.
,
Rubash
,
H. E.
,
Malchau
,
H.
,
Li
,
G.
, and
Muratoglu
,
O. K.
,
2015
, “
Regaining Native Knee Kinematics Following Joint Arthroplasty: A Novel Biomimetic Design With ACL and PCL Preservation
,”
J. Arthroplasty
,
30
(
12
), pp.
2143
2148
.
48.
Fitzpatrick
,
C. K.
,
Clary
,
C. W.
, and
Rullkoetter
,
P. J.
,
2012
, “
The Role of Patient, Surgical, and Implant Design Variation in Total Knee Replacement Performance
,”
J. Biomech.
,
45
(
12
), pp.
2092
2102
.
49.
Smoger
,
L. M.
,
Fitzpatrick
,
C. K.
,
Clary
,
C. W.
,
Cyr
,
A. J.
,
Maletsky
,
L. P.
,
Rullkoetter
,
P. J.
, and
Laz
,
P. J.
,
2015
, “
Statistical Modeling to Characterize Relationships Between Knee Anatomy and Kinematics
,”
J. Orthop. Res.
,
33
(
11
), pp.
1620
1630
.
You do not currently have access to this content.