Ankle foot orthoses (AFOs) are used to correct motor impairments of the ankle. While current AFOs are passive, advances in technology and wearable robotics have opened the opportunity for a powered AFO. The hydraulic ankle foot orthosis (HAFO) is a device that takes advantage of the exceptional power-to-weight and force-to-weight of hydraulic fluid power. The device is untethered, and the power transmission chain is battery–electric motor–hydraulic pump–hose–cylinder, with the power supply worn at the waist and the cylinder actuators at the ankle. The fluid power circuit is configured as an electrohydraulic actuator (EHA) that is controlled by controlling the electric motor. The first prototype weighs 3.3 kg of which 0.97 kg is worn at the ankle. Steady-state torque–velocity performance showed that the prototype can provide 65 N·m of assistance torque and a no-load velocity of 105 deg/s. Closed-loop position control showed low steady-state error but a slow response. The current prototype demonstrates the potential of hydraulics for providing large torques in a compact, lightweight device. The speed performance of the prototype is inadequate for normal walking but can be improved by switching to servo valve control or by developing a custom hydraulic pump.

References

1.
Uustal
,
H.
,
Baerga
,
E.
, and
Joki
,
J.
,
2014
, “
Prosthetics and Orthotics
,”
Physical Medicine and Rehabilitation Board Review
,
S.
Cuccurullo
, ed.,
Demos Medical Publishing
,
New York
, Chap. 6.
2.
National Institutes of Neurological Disorders and Stroke
,
2009
, “
NINDS Foot Drop Information
,” National Institutes of Health, Bethesda, MD, accessed Dec. 28, 2015, http://www.ninds.nih.gov/disorders/foot_drop/foot_drop.htm
3.
National Institutes of Neurological Disorders and Stroke
,
2011
, “
NINDS Spasticity Information
,” National Institutes of Health, Bethesda, MD, accessed Dec. 28, 2015, http://www.ninds.nih.gov/disorders/spasticity/spasticity.htm
4.
Lawler
,
B.
,
Oros
,
M.
, and
Wening
,
J.
,
2007
, “
A Functional Comparison of Solid and Articulated AFOs During Walking and Running in Children With Spastic Hemiplegic Cerebral Palsy
,”
ACPOC News
,
13
(
2
), pp.
5
18
.
5.
Ferris
,
D. P.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
,
2005
, “
An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles
,”
J. Appl. Biomech.
,
21
(
2
), pp.
189
197
.
6.
Shorter
,
K. A.
,
Kogler
,
G. F.
,
Loth
,
E.
,
Durfee
,
W. K.
, and
Hsiao-Wecksler
,
E. T.
,
2011
, “
A Portable Powered Ankle-Foot Orthosis for Rehabilitation
,”
J. Rehabil. Res. Dev.
,
48
(
4
), pp.
459
472
.
7.
Akers
,
A.
,
Gassman
,
M.
, and
Smith
,
R.
,
2006
,
Hydraulic Power System Analysis
,
Taylor & Francis
,
Abingdon, UK
.
8.
Durfee
,
W.
, and
Sun
,
Z.
,
2009
, Fluid Power System Dynamics,
Center for Compact and Efficient Fluid Power
,
Minneapolis, MN
.
9.
Hunt
,
T. M.
, and
Vaughan
,
N.
,
1996
,
The Hydraulic Handbook
, 9th ed.,
Elsevier
,
Philadelphia, PA
.
10.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
Hoboken, NJ
.
11.
Xia
,
J.
, and
Durfee
,
W.
,
2013
, “
Analysis of Small-Scale Hydraulic Actuation Systems
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091101
.
12.
Manring
,
N.
,
2005
, Hydraulic Control Systems,
Wiley
,
Hoboken, NJ
.
13.
Love
,
L. J.
,
Lind
,
R. F.
, and
Jansen
,
J. F.
,
2009
, “
Mesofluidic Actuation for Articulated Finger and Hand Prosthetics
,”
IEEE/RSJ Conference on Intelligent Robots and Systems
(
IROS
), St. Louis, MO, Oct. 10–15, pp.
2586
2591
.
14.
Army Technology,
2014
, “
Raytheon XOS 2 Exoskeleton, Second-Generation Robotics Suit
,” Kable Intelligence Ltd., London, accessed Dec. 28, 2015, http://www.army-technology.com/projects/raytheon-xos-2-exoskeleton-us
15.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
Hoboken, NJ
.
16.
Waters
,
R. L.
, and
Mulroy
,
S.
,
1999
, “
The Energy Expenditure of Normal and Pathologic Gait
,”
Gait Posture
,
9
(
3
), pp.
207
231
.
17.
Skinner
,
H.
, and
Barrack
,
R.
,
1990
, “
Ankle Weighting Effect on Gait in Able-Bodied Adults
,”
Arch. Phys. Med. Rehabil.
,
71
(
2
), pp.
112
115
.
18.
Tudor-Locke
,
C. E.
, and
Myers
,
A. M.
,
2001
, “
Methodological Considerations for Researchers and Practitioners Using Pedometers to Measure Physical (Ambulatory) Activity
,”
Res. Q. Exercise Sport
,
72
(
1
), pp.
1
12
.
19.
Tudor-Locke
,
C.
,
Johnson
,
W. D.
, and
Katzmarzyk
,
P. T.
,
2009
, “
Accelerometer-Determined Steps Per Day in U.S. Adults
,”
Med. Sci. Sports Exercise
,
41
(
7
), pp.
1384
1391
.
20.
Tudor-Locke
,
C.
,
Craig
,
C. L.
,
Brown
,
W. J.
,
Clemes
,
S. A.
,
De Cocker
,
K.
,
Giles-Corti
,
B.
,
Hatano
,
Y.
,
Inoue
,
S.
,
Matsudo
,
S. M.
,
Mutrie
,
N.
,
Oppert
,
J. M.
,
Rowe
,
D. A.
,
Schmidt
,
M. D.
,
Schofield
,
G. M.
,
Spence
,
J. C.
,
Teixeira
,
P. J.
,
Tully
,
M. A.
, and
Blair
,
S. N.
,
2011
, “
How Many Steps/Day Are Enough? For Adults
,”
Int. J. Behav. Nutr. Phys. Act
,
8
, p.
79
.
21.
Tarascon
,
J.-M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.
22.
Love
,
L. J.
,
Richardson
,
B.
,
Lind
,
R.
,
Dehoff
,
R.
,
Peter
,
B.
,
Lowe
,
L.
, and
Blue
,
C.
,
2013
, “
Freeform Fluidics
,”
Mech. Eng.
,
135
(
6
), p.
S17
.
23.
Williams
,
L.
, and Oak Ridge National Laboratory,
2013
, “
ORNL-Group Shows How It’s Done, One Layer at a Time
,”
Additive Manufacturing
, epub.
24.
Lajeunesse
,
V.
,
Vincent
,
C.
,
Routhier
,
F.
,
Careau
,
E.
, and
Michaud
,
F.
,
2015
, “
Exoskeletons’ Design and Usefulness Evidence According to a Systematic Review of Lower Limb Exoskeletons Used for Functional Mobility by People With Spinal Cord Injury
,”
Disabil. Rehabil.: Assistive Technol.
, epub.
25.
Hollander
,
K. W.
,
Ilg
,
R.
,
Sugar
,
T. G.
, and
Herring
,
D.
,
2006
, “
An Efficient Robotic Tendon for Gait Assistance
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
788
791
.
26.
Mooney
,
L. M.
,
Rouse
,
E. J.
, and
Herr
,
H. M.
,
2014
, “
Autonomous Exoskeleton Reduces Metabolic Cost of Human Walking
,”
J. Neuroeng. Rehabil.
,
11
(
1
), p.
151
.
27.
Wiggin
,
M. B.
,
Sawicki
,
G. S.
, and
Collins
,
S. H.
,
2011
, “
An Exoskeleton Using Controlled Energy Storage and Release to Aid Ankle Propulsion
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Zurich, Switzerland, June 29–July 1.
28.
Collins
,
S. H.
,
Wiggin
,
M. B.
, and
Sawicki
,
G. S.
,
2015
, “
Reducing the Energy Cost of Human Walking Using an Unpowered Exoskeleton
,”
Nature
,
522
(
7555
), pp.
212
215
.
29.
Alexander
,
R. M.
,
1988
,
Elastic Mechanisms in Animal Movement
,
Cambridge University Press
,
Cambridge, UK
.
30.
Fukunaga
,
T.
,
Kubo
,
K.
,
Kawakami
,
Y.
,
Fukashiro
,
S.
,
Kanehisa
,
H.
, and
Maganaris
,
C. N.
,
2001
, “
In Vivo Behaviour of Human Muscle Tendon During Walking
,”
Proc. R. Soc. London
, Ser. B,
268
(
1464
), pp.
229
233
.
31.
Pedchenko
,
A.
, and
Barth
,
E. J.
,
2009
, “
Design and Validation of a High Energy Density Elastic Accumulator Using Polyurethane
,”
ASME
Paper No. DSCC2009-2719.
32.
Boes
,
M. K.
,
Islam
,
M.
,
Li
,
Y. D.
, and
Hsiao-Wecksler
,
E. T.
,
2013
, “
Fuel Efficiency of a Portable Powered Ankle-Foot Orthosis
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Seattle, WA, June 24–26.
33.
Azizi
,
E.
,
Brainerd
,
E. L.
, and
Roberts
,
T. J.
,
2008
, “
Variable Gearing in Pennate Muscles
,”
Proc. Natl. Acad. Sci.
,
105
(
5
), pp.
1745
1750
.
34.
Azizi
,
E.
, and
Roberts
,
T. J.
,
2013
, “
Variable Gearing in a Biologically Inspired Pneumatic Actuator Array
,”
Bioinspiration Biomimetics
,
8
(
2
), p.
026002
.
35.
Louie
,
D. R.
,
Eng
,
J. J.
, and
Lam
,
T.
,
2015
, “
Gait Speed Using Powered Robotic Exoskeletons After Spinal Cord Injury: A Systematic Review and Correlational Study
,”
J. Neuroeng. Rehabil.
,
12
, p.
82
.
36.
Forrester
,
L. W.
,
Roy
,
A.
,
Goodman
,
R. N.
,
Rietschel
,
J.
,
Barton
,
J. E.
,
Krebs
,
H. I.
, and
Macko
,
R. F.
,
2012
, “
Clinical Application of a Modular Ankle Robot for Stroke Rehabilitation
,”
NeuroRehabilitation
,
33
(
1
), pp.
85
97
.
37.
Mirelman
,
A.
,
Patritti
,
B. L.
,
Bonato
,
P.
, and
Deutsch
,
J. E.
,
2010
, “
Effects of Virtual Reality Training on Gait Biomechanics of Individuals Post-Stroke
,”
Gait Posture
,
31
(
4
), pp.
433
437
.
38.
Zhang
,
M.
,
Davies
,
T. C.
, and
Xie
,
S.
,
2013
, “
Effectiveness of Robot-Assisted Therapy on Ankle Rehabilitation: A Systematic Review
,”
J. Neuroeng. Rehabil.
,
10
(
1
), p.
30
.
39.
Krebs
,
H.
,
Rossi
,
S.
,
Kim
,
S.-J.
,
Artemiadis
,
P. K.
,
Williams
,
D.
,
Castelli
,
E.
, and
Cappa
,
P.
,
2011
, “
Pediatric Anklebot
,” IEEE
International Conference on Rehabilitation Robotics
(
ICORR
), Zurich, Switzerland, June 29–July 1.
You do not currently have access to this content.