Designing optimal pneumatic muscles for a particular application requires an accurate model of the hyperelastic bladder and how it influences contraction force. Previous work does not fully explain the influence of bladder prestrain on actuator characteristics. We present here modeling and experimental data on the actuation properties of artificial muscles constructed with varying bladder prestrain and wall thickness. The tests determine quasi-static force–length relationships during extension and contraction, for muscles constructed with unstretched bladder lengths equal to 55%, 66%, and 97% of the stretched muscle length and two different wall thicknesses. Actuator force and maximum contraction length are found to depend strongly on both the prestrain and the thickness of the rubber, making existing models inadequate for choosing bladder geometry. A model is presented to better predict force–length characteristics from geometric parameters, using a novel thick-walled tube calculation to account for the nonlinear elastic properties of the bladder. It includes axial force generated by stretching the bladder lengthwise, and it also describes the hoop stress created by radial expansion of the muscle that partially counteracts the internal fluid pressure exerted outward on the mesh. This effective reduction in pressure affects both axial muscle force and mesh-on-bladder friction. The rubber bladder is modeled as a Mooney–Rivlin incompressible solid. The axial force generated by the mesh is found directly from contact forces rather than from potential energy. Modeling the bladder as a thin-walled tube gives a close match to experimental data on wall thickness, but a thick-walled bladder model is found to be necessary for explaining the effects of prestrain.

References

1.
The Buckinham Post, 1958, “
More Help for Polio Victims
,” reprinted from Newsweek, Mar. 21, 1958, http://cyberneticzoo.com/bionics/1957-artificial-muscle-joseph-laws-mckibben-american/
2.
Tondu
,
B.
,
2012
, “
Modelling of the McKibben Artificial Muscle: A Review
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
225
253
.
3.
Gaiser
,
I.
,
Wiegand
,
R.
,
Ivlev
,
O.
,
Andres
,
A.
,
Breitwieser
,
H.
,
Schulz
,
S.
, and
Bretthauer
,
G.
,
2012
, “
Compliant Robotics and Automation With Flexible Fluidic Actuators and Inflatable Structures
,”
Smart Actuation and Sensing Systems—Recent Advances and Future Challenges
,
G.
Berselli
, ed.,
InTech, Rijeka
,
Croatia
.
4.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst.
,
20
(
2
), pp.
15
38
.
5.
Klute
,
G.
,
Czerniecki
,
J.
, and
Hannaford
,
B.
,
2002
, “
Artificial Muscles: Actuators for Biorobotic Systems
,”
Int. J. Rob. Res.
,
21
(
4
), pp.
295
309
.
6.
Klute
,
G. K.
, and
Hannaford
,
B.
,
2000
, “
Accounting for Elastic Energy Storage in McKibben Artificial Muscle Actuators
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
2
), pp.
386
388
.
7.
Gaylord
,
R. H.
,
1958
, “
Fluid Actuated Motor System and Stroking Device
,” U.S. Patent No. 2,844,126.
8.
Shulte
,
H. F.
,
1961
, “
The Characteristics of the McKibben Artificial Muscle
,”
The Application of External Power in Prosthetics and Orthotics
, Vol.
874
,
National Academy of Sciences
,
Washington, DC
, pp.
94
115
.
9.
Schulte
,
H. F.
,
Adamski
,
D. F.
, and
Pearson
,
J. R.
,
1961
, “
Characteristics of the Braided Fluid Actuator
,”
The University of Michigan
, Medical School Department of Physical Medicine and Rehabilitation, Ann Arbor, MI, Orthetics Research Project, Technical Report No. 5.
10.
Daerden
,
F.
, and
Lefeber
,
D.
,
2000
, “
Pneumatic Artificial Muscles: Actuators for Robotics and Automation
,”
Eur. J. Mech. Environ. Eng.
,
47
(
1
), pp.
10
21
.
11.
Marcinčin
,
J.
, and
Palko
,
A.
,
1993
,
Negative Pressure Artificial Muscle—An Unconventional Drive of Robotic and Handling Systems
,
Riecansky Science Publishing
, Slovak Republic, pp.
350
354
.
12.
Yee
,
N.
, and
Coghill
,
G.
,
2002
, “
Modelling of a Novel Rotary Pneumatic Muscle
,”
Australasian Conference on Robotics and Automation
, pp.
186
190
.
13.
Baldwin
,
H. A.
,
1967
, “
Realizable Models of Muscle Function
,”
First Rock Island Arsenal Biomechanics Symposium
, Rock Island, IL, Apr. 5–6, pp.
139
148
.
14.
Daerden
,
F.
,
1999
, “
Conception and Realization of Pleated Pneumatic Artificial Muscles and Their Use as Compliant Actuation Elements
,” Ph.D. thesis, Vrije Universiteit Brussel, Brussels, Belgium.
15.
Ranjan
,
R.
,
Upadhyay
,
P.
,
Kumar
,
A.
, and
Dhyani
,
P.
,
2012
, “
Theoretical and Experimental Modeling of Air Muscle
,”
Int. J. Emerging Technol. Adv. Eng.
,
2
(
4
), pp.
112
119
.
16.
Schroder
,
J.
,
Erol
,
D.
,
Kawamura
,
K.
, and
Dillman
,
R.
,
2003
, “
Dynamic Pneumatic Actuator Model for a Model-Based Torque Controller
,”
IEEE International Symposium on Computational Intelligence in Robotics and Automation
(
CIRA
), Kobe, Japan, July 16–20, Vol.
1
, pp.
342
347
.
17.
Schroder
,
J.
,
Kawamura
,
K.
,
Gockel
,
T.
, and
Dillmann
,
R.
,
2003
, “
Improved Control of a Humanoid Arm Driven by Pneumatic Actuators
,”
3rd IEEE International Conference on Humanoid Robots
(
Humanoids' 03
), Karlsruhe, Germany, Oct. 1–2.
18.
Chou
,
C. P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.
19.
Klute
,
G. K.
, and
Hannaford
,
B.
,
1998
, “
Fatigue Characteristics of McKibben Artificial Muscle Actuators
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Victoria, BC, Canada, Oct. 13–17, pp.
1776
1781
.
20.
Woods
,
B.
,
Gentry
,
M.
,
Kothera
,
C.
, and
Wereley
,
N.
,
2012
, “
Fatigue Life Testing of Swaged Pneumatic Artificial Muscles as Actuators for Aerospace Applications
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
327
343
.
21.
Davis
,
S.
,
Tsagarakis
,
N.
,
Canderle
,
J.
, and
Caldwell
,
D.
,
2003
, “
Enhanced Modelling and Performance in Braided Pneumatic Muscle Actuators
,”
Int. J. Rob. Res.
,
22
(
3–4
), pp.
213
227
.
22.
Ito
,
A.
,
Kiyoto
,
K.
, and
Furuya
,
N.
,
2010
, “
Motion Control of Parallel Manipulator Using Pneumatic Artificial Actuators
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Tianjin, China, Dec. 14–18, pp.
460
465
.
23.
Sugimoto
,
Y.
,
Naniwa
,
K.
, and
Osuka
,
K.
,
2010
, “
Stability Analysis of Robot Motions Driven by McKibben Pneumatic Actuator
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
3049
3054
.
24.
Tiwari
,
R.
,
Meller
,
M. A.
,
Wajcs
,
K. B.
,
Moses
,
C.
,
Reveles
,
I.
, and
Garcia
,
E.
,
2012
, “
Hydraulic Artificial Muscles
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
301
312
.
25.
Hocking
,
E.
, and
Wereley
,
N.
,
2013
, “
Analysis of Nonlinear Elastic Behavior in Miniature Pneumatic Artificial Muscles
,”
Smart Mater. Struct.
,
22
(
1
), p.
014016
.
26.
Ball
,
E.
,
Lin
,
Y.
, and
Garcia
,
E.
,
2013
, “
Characterization and Modeling of Geometric Variations in McKibben Pneumatic Artificial Muscles
,”
Proc. SPIE
,
8686
, p.
868605
.
27.
Kothera
,
C. S.
,
Jangid
,
M.
,
Sirohi
,
J.
, and
Wereley
,
N. M.
,
2009
, “
Experimental Characterization and Static Modeling of McKibben Actuators
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091010
.
28.
Beda
,
T.
,
2007
, “
Modeling Hyperelastic Behavior of Rubber: A Novel Invariant-Based and a Review of Constitutive Models
,”
J. Polym. Sci., Part B: Polym. Phys.
,
45
(
13
), pp.
1713
1732
.
29.
Niemczura
,
J. G.
,
2010
, “
On the Response of Rubbers at High Strain Rates
,”
Sandia National Laboratories
, Albuquerque, NM, Report No. SAND2010-1480.
30.
Finney
,
R. H.
,
2001
, “
Finite Element Analysis
,”
Engineering With Rubber
, Hanser, Munich, Germany, pp.
266
267
.
31.
Aernouts
,
J.
,
Couckuyt
,
I.
,
Crombecq
,
K.
, and
Dirckx
,
J.
,
2010
, “
Elastic Characterization of Membranes With a Complex Shape Using Point Indentation Measurements and Inverse Modeling
,”
Int. J. Eng. Sci.
,
48
(
6
), pp.
599
611
.
32.
Feng
,
W. W.
, and
Hallquist
,
J. O.
,
2012
, “
On Mooney-Rivlin Constants for Elastomers
,”
12th International LS-DYNA Users Conference
, Dearborn, MI, June 3–5.
33.
Kang
,
B. S.
,
Kothera
,
C. S.
,
Woods
,
B. K. S.
, and
Wereley
,
N. M.
,
2009
, “
Dynamic Modeling of Mckibben Pneumatic Artificial Muscles for Antagonistic Actuation
,”
International Conference on Robotics and Automation
(
ICRA '09
), Kobe, Japan, May 12–17, pp.
182
187
.
You do not currently have access to this content.