A configuration of a mechanical linkage is defined as regular if there exists a subset of actuators with their corresponding Jacobian columns spans the gripper's velocity space. All other configurations are defined in the literature as singular configurations. Consider mechanisms with grippers' velocity space m. We focus our attention on the case where m Jacobian columns of such mechanism span m, while all the rest are linearly dependent. These are obviously an undesirable configuration, although formally they are defined as regular. We define an optimal-regular configuration as such that any subset of m actuators spans an m-dimensional velocity space. Since this densely constraints the work space, a more relaxed definition is needed. We therefore introduce the notion of k-singularity of a redundant mechanism which means that rigidifying k actuators will result in an optimal-regularity. We introduce an efficient algorithm to detect a k-singularity, give some examples for cases where m = 2, 3, and demonstrate our algorithm efficiency.

References

1.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1995
, “
The Kinematics of Hyper-Redundant Robot Locomotion
,”
IEEE Trans. Rob. Autom.
,
11
(
6
), pp.
781
793
.
2.
Shvalb
,
N.
,
Moshe
,
B. B.
, and
Medina
,
O.
, 2013, “
A Real-Time Motion Planning Algorithm for a Hyper-Redundant Set of Mechanisms
,”
Robotica
,
31
(
8
), pp. 1327–1335.
3.
Sujan
,
V. A.
, and
Dubowsky
,
S.
,
2004
, “
Design of a Lightweight Hyper-Redundant Deployable Binary Manipulator
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
29
39
.
4.
Ota
,
T.
,
Degani
,
A.
,
Zubiate
,
B.
,
Wolf
,
A.
,
Choset
,
H.
,
Schwartzman
,
D.
, and
Zenati
,
M. A.
,
2006
, “
Epicardial Atrial Ablation Using a Novel Articulated Robotic Medical Probe Via a Percutaneous Subxiphoid Approach
,”
Innovations (Philadelphia, PA)
,
1
(
6
), pp.
335
340
.
5.
Medina
,
O.
,
Shapiro
,
A.
, and
Shvalb
,
N.
,
2015
, “
Motion Planning for an Actuated Flexible Polyhedron Manifold
,”
Adv. Rob.
,
29
(
18
), pp.
1195
1203
.
6.
Medina
,
O.
,
Shapiro
,
A.
, and
Shvalb
,
N.
,
2015
, “
Kinematics for an Actuated Flexible n-Manifold
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021009
.
7.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
, Vol.
3
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
8.
de Wit
,
C. C.
,
Siciliano
,
B.
, and
Bastin
,
G.
,
2012
,
Theory of Robot Control
,
Springer Science & Business Media
,
Berlin
.
9.
Siciliano
,
B.
,
1990
, “
Kinematic Control of Redundant Robot Manipulators: A Tutorial
,”
J. Intell. Rob. Syst.
,
3
(
3
), pp.
201
212
.
10.
Sciavicco
,
L.
, and
Siciliano
,
B.
,
2012
,
Modelling and Control of Robot Manipulators
,
Springer Science and Business Media
,
Berlin
.
11.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
12.
Srivatsan
,
R. A.
,
Bandyopadhyay
,
S.
, and
Ghosal
,
A.
,
2013
, “
Analysis of the Degrees-of-Freedom of Spatial Parallel Manipulators in Regular and Singular Configurations
,”
Mech. Mach. Theory
,
69
, pp.
127
141
.
13.
Shvalb
,
N.
,
Shoham
,
M.
,
Bamberger
,
H.
, and
Blanc
,
D.
,
2009
, “
Topological and Kinematic Singularities for a Class of Parallel Mechanisms
,”
Math. Probl. Eng.
,
2009
, p.
249349
.
14.
Liu
,
G.
,
Lou
,
Y.
, and
Li
,
Z.
,
2003
, “
Singularities of Parallel Manipulators: A Geometric Treatment
,”
IEEE Trans. Rob. Autom.
,
19
(
4
), pp.
579
594
.
15.
Tsai
,
L.-W.
,
1996
, “
Kinematics of a Three-DOF Platform With Three Extensible Limbs
,”
Recent Advances in Robot Kinematics
,
Springer
,
Berlin
, pp.
401
410
.
16.
Zlatanov
,
D.
,
Fenton
,
R.
, and
Benhabib
,
B.
,
1995
, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
566
572
.
17.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
, 2002, “
Constraint Singularities of Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Washington, DC, May 11–15, pp.
496
502
.
18.
Zlatanov
,
D. S.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1998
, “
Classification and Interpretation of the Singularities of Redundant Mechanisms
,”
ASME
Paper No. DETC98/MECH-5896.
19.
Conconi
,
M.
, and
Carricato
,
M.
,
2009
, “
A New Assessment of Singularities of Parallel Kinematic Chains
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
757
770
.
20.
Villard
,
G.
,
2003
, “
Computation of the Inverse and Determinant of a Matrix
,”
Algorithms Seminar
,
INRIA
, Le Chesnay, France, pp.
29
32
.
21.
Muller
,
M. E.
,
1959
, “
A Note on a Method for Generating Points Uniformly on n-Dimensional Spheres
,”
Commun. ACM
,
2
(
4
), pp.
19
20
.
22.
Marsaglia
,
G.
,
1972
, “
Choosing a Point From the Surface of a Sphere
,”
Ann. Math. Stat.
,
43
(
2
), pp.
645
646
.
23.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
, Vol.
7
,
Oxford University Press
,
Oxford, UK
.
24.
Blanc
,
D.
, and
Shvalb
,
N.
,
2012
, “
Generic Singular Configurations of Linkages
,”
Topol. Appl.
,
159
(
3
), pp.
877
890
.
25.
West
,
D. B.
,
2001
,
Introduction to Graph Theory
, 2nd ed., Prentice Hall, Upper Saddle River, NJ.
26.
Wang
,
X.
, and
Hu
,
Y.
,
2009
, “
Reordering and Partitioning Jacobian Matrices Using Graph-Spectral Method
,”
Intelligent Robotics and Applications
, Springer, Berlin, pp.
696
705
.
27.
Garey
,
M. R.
, and
Johnson
,
D. S.
,
1979
,
Computers and Intractability: A Guide to the Theory of NP-Completeness
,
W. H. Freeman & Co.
,
New York
.
You do not currently have access to this content.