After discussing the Study point transformation operator, a unified way to formulate kinematic problems, using “points moving on planes or spheres” constraint equations, is introduced. Application to the direct kinematics problem solution of a number of different parallel Schönflies motion robots is then developed. Certain not widely used but useful tools of algebraic geometry are explained and applied for this purpose. These constraints and tools are also applied to some special parallel robots called “double triangular” to show that the approach is flexible and universally pertinent to manipulator kinematics in reducing the complexity of some previously achieved solutions. Finally a novel two-legged Schönflies architecture is revealed to emphasize that good design is not only essential to good performance but also to easily solve kinematic models. In this example architecture, with double basally actuated legs so as to minimize moving mass, the univariate polynomial solution turns out to be simplest, i.e., of degree 2.

1.
Daniali
,
H. R. M.
,
Zsombor-Murray
,
P. J.
, and
Angeles
,
J.
, 1993, “
The Kinematics of 3-DOF Planar and Spherical Double-Triangular Manipulators
,”
Computational Kinematics
,
Kluwer
,
Dordrecht
, pp.
153
164
.
2.
Daniali
,
H. R. M.
, 1995, “
Contribution to the Synthesis of Parallel Manipulators
,” Ph.D. thesis, McGill University, Montreal, QC, Canada.
3.
Nabat
,
V.
,
Rodriguez
,
M.
,
Company
,
O.
,
Pierrot
,
F.
, and
Dauchez
,
P.
, 2005, “
Very Fast Schoenflies Motion Generator
,” IEEE Publication No. 0-7803-9484-4/05, pp.
365
370
.
4.
Angeles
,
J.
,
Caro
,
S.
,
Khan
,
W.
, and
Morozov
,
A.
, 2008, “
Kinetostatic Design of an Innovative Schönflies Motion Generator
,”
J. Mech. Eng. Sci.
0022-2542,
220
, pp.
935
943
.
5.
Gauthier
,
J. -F.
, 2008, “
Contributions to the Optimum Design of Schönflies Motion Generators
,” M.Eng. thesis, McGill University, Montreal, QC, Canada.
6.
Zsombor-Murray
,
P. J.
, 2008, “
Kinematic Mapping and Kinematics of Some Parallel Manipulators
,”
Proceedings of the Second International Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators
, Montpellier, France, pp.
41
48
.
7.
Husty
,
M.
, 1996, “
An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms
,”
Mech. Mach. Theory
0094-114X,
31
(
4
), pp.
365
379
.
8.
Bottema
,
O.
, and
Roth
,
B.
, 1990,
Theoretical Kinematics
,
Dover
,
New York
.
9.
Zhou
,
K.
,
Mao
,
D.
, and
Tao
,
Z.
, 2002, “
Kinematic Analysis and Application Research on a High-Speed Travelling Double Four-Rod Spatial Parallel Mechanism
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
19
(
12
), pp.
873
878
.
10.
Lee
,
C. -C.
, and
Hervé
,
J. M.
, 2009, “
On Some Applications of Primitive Schönflies-Motion Generators
,”
Mech. Mach. Theory
0094-114X,
44
, pp.
2153
2163
.
11.
Müller
,
H. R.
, 1962,
Sphärische Kinematik
,
Deutscher Verlag der Wissenschaften
,
Berlin
.
12.
Zsombor-Murray
,
P. J.
, and
Hyder
,
A.
, 1992, “
Design, Mobility Analysis and Animation of a Double Equilateral Tetrahedral Mechanism
,”
Robot. Auton. Syst.
,
9
, pp.
227
236
.
13.
Blaschke
,
W.
, 1960,
Kinematik und Quaternionen
,
Deutscher Verlag der Wissenschaften
,
Berlin
.
14.
Husty
,
M.
,
Pfurner
,
M.
, and
Schröcker
,
H. -P.
, 2007, “
A New and Efficient Algorithm for the Inverse Kinematics of a General Serial 6R Manipulator
,”
Mech. Mach. Theory
0094-114X,
42
(
1
), pp.
66
81
.
15.
Study
,
E.
, 1903,
Geometrie der Dynamen
,
B.G. Teubner
,
Leipzig
.
16.
Vogler
,
H.
, 2008, “
Vorwort des Herausgebers—Bemerkungen zu einem Satz vom W. Blaschke und zur Methode von Borel-Bricard
,”
Grazer Mathematische Berichte
1016-7692,
352
, pp.
1
16
.
You do not currently have access to this content.