Abstract

This article presents a control strategy for the stiffness regulation of parallel manipulators based on the implementation of a simple proportional controller. Starting from the assignment of the stiffness or compliance matrix in the task space, defined by the application-specific requirements, a proper control action is calculated by considering the translational and rotational compliances of the end effector. The proposed approach is applied in SE(2) and SE(3), addressing the analysis of the 3RRR planar parallel manipulator and the 6UPS Stewart–Gough platform. The proposed control scheme decouples the effects of the applied force and moment on the end effector displacement and rotation. Numerical examples are presented, with multibody simulations performed to verify the effectiveness of the proposed approach. The effect of friction in the active and passive joints is also investigated.

References

1.
Patel
,
Y. D.
, and
George
,
P. M.
,
2012
, “
Parallel Manipulators Applications—A Survey
,”
Modern Mech. Eng.
,
02
(
03
), pp.
57
64
.
2.
Kelaiaia
,
R.
,
2016
, “
Improving the Pose Accuracy of the Delta Robot in Machining Operations
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2205
2215
.
3.
Barnfather
,
J. D.
,
Goodfellow
,
M. J.
, and
Abram
,
T.
,
2016
, “
Positional Capability of a Hexapod Robot for Machining Applications
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1–4
), pp.
1103
1111
.
4.
Hu
,
H.
,
Chen
,
S.
,
Zhao
,
J.
,
Luo
,
J.
,
Jia
,
S.
,
Zhou
,
J.
,
Zhang
,
J.
,
Xiong
,
C.
,
Zhang
,
C.
, and
Yang
,
G.
,
2024
, “
Robust Adaptive Control of a Bimanual 3t1r Parallel Robot With Gray-Box-Model and Prescribed Performance Function
,”
IEEE/ASME Trans. Mech.
,
29
(
1
), pp.
466
475
.
5.
Li
,
Y.
, and
Xu
,
Q.
,
2007
, “
Design and Development of a Medical Parallel Robot for Cardiopulmonary Resuscitation
,”
IEEE/ASME Trans. Mech.
,
12
(
3
), pp.
265
273
.
6.
Essomba
,
T.
, and
Nguyen Phu
,
S.
,
2020
, “
Kinematic Analysis and Design of a Six-Degrees of Freedom 3-rrps Mechanism for Bone Reduction Surgery
,”
ASME J. Med. Devices
,
15
(
1
), p.
011101
.
7.
Su
,
T.
,
Yuan
,
Q.
,
Liang
,
X.
,
Yan
,
Y.
,
Zhang
,
H.
,
Jian
,
X.
,
He
,
G.
, and
Zhao
,
Q.
,
2024
, “
Design and Analysis of a Novel Redundant Parallel Mechanism for Long Bone Fracture Reduction
,”
ASME J. Mech. Rob.
,
16
(
8
), p.
081007
.
8.
Ni
,
M.
,
Liu
,
J.
,
Sun
,
Z.
, and
Sun
,
T.
,
2024
, “
Design and Experiment of an Ankle Rehabilitation Robot After Fracture Surgery
,”
ASME J. Mech. Rob.
,
16
(
12
), p.
121014
.
9.
Ghorbani
,
L.
, and
Omurlu
,
V. E.
,
2022
, “
Neural Networks Based Real Time Solution for Forward Kinematics of a 6×6 Upu Flight Simulator
,”
Intell. Service Rob.
,
15
(
5
), pp.
611
626
.
10.
Zarkandi
,
S.
,
2021
, “
Dynamic Modeling and Power Optimization of a 4RpSP + PS Parallel Flight Simulator Machine
,”
Robotica
,
40
(
3
), pp.
646
671
.
11.
Zhang
,
B.
,
Shang
,
W.
,
Gao
,
X.
,
Li
,
Z.
,
Wang
,
X.
,
Ma
,
Y.
,
Zhang
,
F.
, et al.,
2024
, “
Synthetic Design and Analysis of the New Feed Cabin Mechanism in Five-Hundred-Meter Aperture Spherical Radio Telescope (Fast)
,”
Mech. Mach. Theory
,
191
, p.
105507
.
12.
Liu
,
F.
,
Guo
,
C.
,
Hu
,
Q.
,
Li
,
X.
,
Liu
,
W.
,
Wen
,
W.
,
Liu
,
L.
, and
Zhao
,
J.
,
2023
, “
Nonlinear Kinematics of Space Parallel Robot With Bricard Mechanism
,”
Acta Astronaut.
,
208
, pp.
367
380
.
13.
Kim
,
H. W.
,
Lee
,
J. H.
,
Suh
,
I. H.
, and
Yi
,
B. -J.
,
2005
, “
Comparative Study and Experimental Verification of Singular-Free Algorithms for a 6 DOF Parallel Haptic Device
,”
Mechatronics
,
15
(
4
), pp.
403
422
.
14.
Zhao
,
Y.
, and
Gao
,
F.
,
2009
, “
Dynamic Performance Comparison of the 8PSS Redundant Parallel Manipulator and Its Non-Redundant Counterpart—the 6PSS Parallel Manipulator
,”
Mech. Mach. Theory
,
44
(
5
), pp.
991
1008
.
15.
Liu
,
X.
,
Qi
,
C.
,
Lin
,
J.
,
Li
,
D.
, and
Gao
,
F.
,
2024
, “
An Actuation Acceleration-Based Kinematic Modeling and Parameter Identification Approach for a Six-Degrees-of-Freedom 6-psu Parallel Robot With Joint Clearances
,”
ASME J. Mech. Rob.
,
17
(
1
), p.
011005
.
16.
Pulloquinga
,
J. L.
,
Escarabajal
,
R. J.
,
Valera
,
A.
,
Valles
,
M.
, and
Mata
,
V.
,
2023
, “
A Type Ii Singularity Avoidance Algorithm for Parallel Manipulators Using Output Twist Screws
,”
Mech. Mach. Theory
,
183
, p.
105282
.
17.
He
,
C.
,
Guo
,
W.
,
Zhu
,
Y.
, and
Jiang
,
L.
,
2023
, “
Phynrnet: Physics-Informed Newton–Raphson Network for Forward Kinematics Solution of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
16
(
8
), p.
081003
.
18.
Lei
,
J.
, and
Wang
,
J.
,
2022
, “
Orientation Workspace Analysis and Parameter Optimization of 3-rrps Parallel Robot for Pelvic Fracture Reduction
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
051003
.
19.
Qiu
,
J.
,
Wu
,
J.
, and
Zhu
,
B.
,
2023
, “
Optimization Design of a Parallel Surgical Robot With Remote Center of Motion
,”
Mech. Mach. Theory
,
185
, p.
105327
.
20.
Saglia
,
J. A.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2008
, “
Geometry and Kinematic Analysis of a Redundantly Actuated Parallel Mechanism That Eliminates Singularities and Improves Dexterity
,”
ASME J. Mech. Des.
,
130
(
12
), p.
124501
.
21.
Kang
,
L.
,
Kim
,
W.
, and
Yi
,
B.-J.
,
2018
, “
Modeling and Applications of a Family of Five-Degree-of-Freedom Parallel Mechanisms With Kinematic and Actuation Redundancy
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051004
.
22.
Liu
,
X.
,
Wan
,
B.
,
Liu
,
Y.
,
Chen
,
R.
,
Yao
,
J.
, and
Zhao
,
Y.
,
2023
, “
Kinematic Performance Analysis and Dimensional Optimization of New Symmetric Parallel Mechanism 6RPS With Multi-Redundant Actuations
,”
ASME J. Mech. Rob.
,
16
(
8
), p.
081002
.
23.
Liu
,
X.
,
Wan
,
B.
,
Liu
,
Y.
,
Wang
,
Y.
, and
Zhao
,
Y.
,
2024
, “
Singularity Analysis of Actuation Coordination and New Indices for Optimal Design of Redundantly Actuated Parallel Manipulators
,”
ASME J. Mech. Rob.
,
16
(
10
), p.
101007
.
24.
Liu
,
S.
,
2017
, “
Singularity and Path-Planning With the Working Mode Conversion of a 3-DOF 3-RRR Planar Parallel Manipulator
,”
Mech. Mach. Theory
,
107
, pp.
166
182
.
25.
Jiang
,
B.
,
Huang
,
G.
,
Zhu
,
S.
,
Fang
,
H.
,
Tian
,
X.
,
Xie
,
A.
,
Zhang
,
L.
,
Zhao
,
P.
,
Gu
,
J.
, and
Kong
,
L.
,
2023
, “
Type Synthesis and Trajectory Planning of 5-DOF Redundantly Actuated Parallel Robots With Large Output Rotational Angles for Large Workpieces
,”
Robotica
,
42
(
1
), pp.
242
264
.
26.
Koszewnik
,
A.
,
Troc
,
K.
, and
Słowik
,
M.
,
2014
, “
Pid Controllers Design Applied to Positioning of Ball on the Stewart Platform
,”
Acta Mech. Auto.
,
8
(
4
), pp.
214
218
.
27.
Ríos
,
A.
,
Hernández
,
E. E.
, and
Valdez
,
S. I.
,
2021
, “
A Two-Stage Mono- and Multi-Objective Method for the Optimization of General UPS Parallel Manipulators
,”
Mathematics
,
9
(
5
), pp.
1
20
.
28.
Yang
,
C.
,
Huang
,
Q.
,
Jiang
,
H.
,
Ogbobe Peter
,
O.
, and
Han
,
J.
,
2010
, “
Pd Control With Gravity Compensation for Hydraulic 6-DOF Parallel Manipulator
,”
Mech. Mach. Theory
,
45
(
4
), pp.
666
677
.
29.
Taghizadeh
,
M.
, and
Javad Yarmohammadi
,
M.
,
2018
, “
Development of a Self-Tuning PID Controller on Hydraulically Actuated Stewart Platform Stabilizer With Base Excitation
,”
Int. J. Control. Autom. Syst.
,
16
(
6
), pp.
2990
2999
.
30.
Shang
,
W. W.
,
Cong
,
S.
,
Li
,
Z. X.
, and
Jiang
,
S. L.
,
2009
, “
Augmented Nonlinear Pd Controller for a Redundantly Actuated Parallel Manipulator
,”
Adv. Rob.
,
23
(
12–13
), pp.
1725
1742
.
31.
Saied
,
H.
,
Chemori
,
A.
,
El Rafei
,
M.
,
Francis
,
C.
, and
Pierrot
,
F.
,
2019
,
From Non-Model-Based to Model-Based Control of Pkms: A Comparative Study
,
R.
Rizk
, and
M.
Awad
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
153
169
.
32.
Codourey
,
A.
,
1998
, “
Dynamic Modeling of Parallel Robots for Computed-Torque Control Implementation
,”
Inter. J. Rob. Res.
,
17
(
12
), pp.
1325
1336
.
33.
Sancak
,
K. V.
, and
Bayraktaroglu
,
Z. Y.
,
2022
, “
Nonlinear Computed Torque Control of 6-DOF Parallel Manipulators
,”
Int. J. Control Autom. Syst.
,
20
(
7
), pp.
2297
2311
.
34.
Zubizarreta
,
A.
,
Marcos
,
M.
,
Cabanes
,
I.
,
Pinto
,
C.
, and
Portillo
,
E.
,
2012
, “
Redundant Sensor Based Control of the 3RRR Parallel Robot
,”
Mech. Mach. Theory
,
54
, pp.
1
17
.
35.
Honegger
,
M.
,
Codourey
,
A.
, and
Burdet
,
E.
,
1997
, “
Adaptive Control of the Hexaglide, a 6 DOF Parallel Manipulator
,”
Proceedings of International Conference on Robotics and Automation
,
Albuquerque, NM
,
Apr. 25
,
IEEE
, Vol. 1, pp.
543
548
.
36.
Dai
,
X.
,
Song
,
S.
,
Xu
,
W.
,
Huang
,
Z.
, and
Gong
,
D.
,
2021
, “
Modal Space Neural Network Compensation Control for Gough–Stewart Robot With Uncertain Load
,”
Neurocomputing
,
449
, pp.
245
257
.
37.
Huynh
,
B.-P.
, and
Kuo
,
Y.-L.
,
2020
, “
Dynamic Filtered Path Tracking Control for a 3RRR Robot Using Optimal Recursive Path Planning and Vision-Based Pose Estimation
,”
IEEE Access
,
8
, p.
174736
.
38.
Orekhov
,
A. L.
, and
Simaan
,
N.
,
2019
, “
Directional Stiffness Modulation of Parallel Robots With Kinematic Redundancy and Variable Stiffness Joints
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051003
.
39.
Simaan
,
N.
, and
Shoham
,
M.
,
2003
, “
Stiffness Synthesis of a Variable Geometry Six-Degrees-of-Freedom Double Planar Parallel Robot
,”
Inter. J. Rob. Res.
,
22
(
9
), pp.
757
775
.
40.
Abdolshah
,
S.
,
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S. K.
,
2017
, “
Optimizing Stiffness and Dexterity of Planar Adaptive Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031004
.
41.
Yeo
,
S.
,
Yang
,
G.
, and
Lim
,
W.
,
2013
, “
Design and Analysis of Cable-Driven Manipulators With Variable Stiffness
,”
Mech. Mach. Theory
,
69
, pp.
230
244
.
42.
Pitt
,
E. B.
,
Simaan
,
N.
, and
Barth
,
E. J.
,
2015
, “
An Investigation of Stiffness Modulation Limits in a Pneumatically Actuated Parallel Robot With Actuation Redundancy
,”
ASME/BATH 2015 Symposium on Fluid Power and Motion Control
,
Chicago, IL
,
Oct. 12–14
.
43.
Zhou
,
X.
,
Jun
,
S.-k.
, and
Krovi
,
V.
,
2015
,
Planar Cable Robot With Variable Stiffness
,
Springer International Publishing
,
Cham, Switzerland
, pp.
391
403
.
44.
Ohe
,
T.
,
Alemayoh
,
T. T.
,
Lee
,
J. H.
, and
Okamoto
,
S.
,
2022
, “
Feedforward Operational Stiffness Modulation and External Force Estimation of Planar Robots Equipped With Variable Stiffness Actuators
,”
Intell. Service Rob.
,
15
(
2
), pp.
179
192
.
45.
Dutta
,
A.
,
Salunkhe
,
D. H.
,
Kumar
,
S.
,
Udai
,
A. D.
, and
Shah
,
S. V.
,
2019
, “
Sensorless Full Body Active Compliance in a 6 DOF Parallel Manipulator
,”
Rob. Comput. Integr. Manufact.
,
59
, pp.
278
290
.
46.
Latifinavid
,
M.
,
Donder
,
A.
, and
Konukseven
,
E. i.
,
2018
, “
High-Performance Parallel Hexapod-Robotic Light Abrasive Grinding Using Real-Time Tool Deflection Compensation and Constant Resultant Force Control
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
3403
3416
.
47.
Vinoth
,
V.
,
Singh
,
Y.
, and
Santhakumar
,
M.
,
2014
, “
Indirect Disturbance Compensation Control of a Planar Parallel (2-prp and 1-ppr) Robotic Manipulator
,”
Rob. Comput. Integrat. Manufact.
,
30
(
5
), pp.
556
564
.
48.
Singh
,
Y.
, and
Santhakumar
,
M.
,
2015
, “
Inverse Dynamics and Robust Sliding Mode Control of a Planar Parallel (2-prp and 1-ppr) Robot Augmented With a Nonlinear Disturbance Observer
,”
Mech. Mach. Theory
,
92
, pp.
29
50
.
49.
Verotti
,
M.
,
Masarati
,
P.
,
Morandini
,
M.
, and
Belfiore
,
N.
,
2016
, “
Isotropic Compliance in the Special Euclidean Group SE(3)
,”
Mech. Mach. Theory
,
98
, pp.
263
281
.
50.
Verotti
,
M.
,
Masarati
,
P.
,
Morandini
,
M.
, and
Belfiore
,
N. P.
,
2020
, “
Active Isotropic Compliance in Redundant Manipulators
,”
Multi. Syst. Dyn.
,
49
(
4
), pp.
421
445
.
51.
Merlini
,
T.
, and
Morandini
,
M.
,
2004
, “
The Helicoidal Modeling in Computational Finite Elasticity. Part I: Variational Formulation
,”
Int. J. Solids Struct.
,
41
(
18-19
), pp.
5351
5381
.
52.
Salisbury
,
J.
,
1980
, “
“Active Stiffness Control of a Manipulator in Cartesian Coordinates”
,” 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes,
IEEE
.
53.
Tsai
,
L.-w.
,
1999
,
Robot Analysis
,
A @Wiley-Interscience Publication, Wiley
,
New York
.
54.
Chen
,
S.-F.
, and
Kao
,
I.
,
2000
, “
Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers
,”
Inter. J. Rob. Res.
,
19
(
9
), pp.
835
847
.
55.
Huang
,
C.
,
Hung
,
W.-H.
, and
Kao
,
I.
,
May 2002
,
Proceedings of International Conference on Robotics and Automation
,
Washington, DC
,
IEEE
, pp.
823
828
.
56.
Belfiore
,
N. P.
,
Verotti
,
M.
,
Di Giamberardino
,
P.
, and
Rudas
,
I. J.
,
2012
, “
Active Joint Stiffness Regulation to Achieve Isotropic Compliance in the Euclidean Space
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041010
.
57.
Yime
,
E.
,
Saltaren
,
R.
,
Garcia
,
C.
, and
Sabater
,
J. M.
,
2011
, “
Robot Based on Task-Space Dynamical Model
,”
IET Control Theory Appl.
,
5
(
18
), pp.
2111
2119
.
58.
Masarati
,
P.
,
Morandini
,
M.
,
Quaranta
,
G.
, and
Mantegazza
,
P.
,
2003
, “
Open-source Multibody Software
,”
Proceedings of Multibody Dynamics 2003
,
Lisbon, Portugal
,
July 1–4
.
59.
Masarati
,
P.
,
Morandini
,
M.
, and
Mantegazza
,
P.
,
2014
, “
An Efficient Formulation for General-Purpose Multibody/multiphysics Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041001
.
60.
Zhang
,
H.
,
Zhang
,
R.
,
Zanoni
,
A.
, and
Masarati
,
P.
,
2022
, “
Performance of Implicit A-Stable Time Integration Methods for Multibody System Dynamics
,”
Multi. Syst. Dyn.
,
54
(
3
), pp.
263
301
.
61.
Dupont
,
P.
,
Hayward
,
V.
,
Armstrong
,
B.
, and
Altpeter
,
F.
,
2002
, “
Single State Elastoplastic Friction Models
,”
IEEE. Trans. Automat. Contr.
,
47
(
5
), pp.
787
792
.
You do not currently have access to this content.