Abstract

Exoskeleton robotics is a key technology in the field of physical rehabilitation, and the main research direction is to precisely control the exoskeleton structure with improved dexterity. Bowden-cables are uniquely structured for power transmission in lightweight wearable exoskeletons, but precisely controlling the exoskeleton system is challenging when considering their inherent limitations such as friction and hysteresis. This paper proposes a compact wearable exoskeleton with Bowden-cable designed for the purpose of rehabilitating the elbow and forearm. First, we optimize the performance of the Bowden-cable transmission by incorporating redirection pulleys, while a mathematical model is developed to describe the Bowden-cable and pulley system (BCPS). Afterwards, guided by the principle of ergonomic concept, the mechanism design and size calculation of the exoskeleton are conducted. Moreover, an optimized sliding mode control strategy was implemented to control the exoskeleton, and the efficacy of the designed controller was assessed through trajectory tracking experiments simulating “eating” movements. Finally, the experimental results demonstrate that the root mean square errors (RMSEs) for elbow and forearm angle tracking are 0.84 deg and 1.13 deg, respectively, indicating that the designed exoskeleton is suitable for arm rehabilitation training.

References

1.
Sanjuan
,
J. D.
,
Castillo
,
A. D.
,
Padilla
,
M. A.
,
Quintero
,
M. C.
,
Gutierrez
,
E. E.
,
Sampayo
,
I. P.
,
Hernandez
,
J. R.
, and
Rahman
,
M. H.
,
2020
, “
Cable Driven Exoskeleton for Upper-Limb Rehabilitation: A Design Review
,”
Rob. Auton. Syst.
,
126
(
C
), p.
103445
.
2.
Kwakkel
,
G.
,
Kollen
,
B. J.
,
van der Grond
,
J.
, and
Prevo
,
A. J. H.
,
2003
, “
Probability of Regaining Dexterity in the Flaccid Upper Limb
,”
Stroke
,
34
(
9
), pp.
2181
2186
.
3.
Bayona
,
N. A.
,
Bitensky
,
J.
,
Salter
,
K.
, and
Teasell
,
R.
,
2005
, “
The Role of Task-Specific Training in Rehabilitation Therapies
,”
Top. Stroke Rehabil.
,
12
(
3
), pp.
58
65
.
4.
Lo
,
H. S.
, and
Xie
,
S. Q.
,
2012
, “
Exoskeleton Robots for Upper-Limb Rehabilitation: State of the Art and Future Prospects
,”
Med. Eng. Phys.
,
34
(
3
), pp.
261
268
.
5.
Dellon
,
B.
, and
Matsuoka
,
Y.
,
2007
, “
Prosthetics, Exoskeletons, and Rehabilitation [Grand Challenges of Robotics]
,”
IEEE Rob. Autom. Mag.
,
14
(
1
), pp.
30
34
.
6.
Zhang
,
J.
,
Li
,
X.
,
Liu
,
J.
, and
Chen
,
W.
,
2018
, “
Design and Analysis of a Compliant Elbow-Joint for Arm Rehabilitation Robot
,”
2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
Wuhan, China
,
May 31–June 2
, pp.
2321
23266
.
7.
Gupta
,
A.
,
Singh
,
A.
,
Verma
,
V.
,
Mondal
,
A. K.
, and
Gupta
,
M. K.
,
2020
, “
Developments and Clinical Evaluations of Robotic Exoskeleton Technology for Human Upper-Limb Rehabilitation
,”
Adv. Rob.
,
34
(
15
), pp.
1023
1040
.
8.
Reinkensmeyer
,
D. J.
,
Emken
,
J. L.
, and
Cramer
,
S. C.
,
2004
, “
Robotics, Motor Learning, and Neurologic Recovery
,”
Annu. Rev. Biomed. Eng.
,
6
(
1
), pp.
497
525
.
9.
Gull
,
M. A.
,
Bai
,
S.
, and
Bak
,
T.
,
2020
, “
A Review on Design of Upper Limb Exoskeletons
,”
Robotics
,
9
(
1
), p.
16
.
10.
Cappello
,
L.
,
Pirrera
,
A.
,
Weaver
,
P. M.
, and
Masia
,
L.
,
2015
, “
A Series Elastic Composite Actuator for Soft Arm Exosuits
,”
2015 IEEE International Conference on Rehabilitation Robotics (ICORR)
,
Singapore
,
Aug. 11–14
, pp.
61
66
.
11.
Dinh
,
B. K.
,
Xiloyannis
,
M.
,
Cappello
,
L.
,
Antuvan
,
C. W.
,
Yen
,
S.-C.
, and
Masia
,
L.
,
2017
, “
Adaptive Backlash Compensation in Upper Limb Soft Wearable Exoskeletons
,”
Rob. Auton. Syst.
,
92
, pp.
173
186
.
12.
Lessard
,
S.
,
Pansodtee
,
P.
,
Robbins
,
A.
,
Trombadore
,
J. M.
,
Kurniawan
,
S.
, and
Teodorescu
,
M.
,
2018
, “
A Soft Exosuit for Flexible Upper-Extremity Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
8
), pp.
1604
1617
.
13.
Dežman
,
M.
,
Asfour
,
T.
,
Ude
,
A.
, and
Gams
,
A.
,
2022
, “
Mechanical Design and Friction Modelling of a Cable-Driven Upper-Limb Exoskeleton
,”
Mech. Mach. Theory
,
171
, pp.
104746
104746
.
14.
Bai
,
S.
,
Christensen
,
S.
, and
Islam
,
M. R. U.
,
2017
, “
An Upper-Body Exoskeleton With a Novel Shoulder Mechanism for Assistive Applications
,”
IEEE Xplore
,
Munich, Germany
,
July 3–7
, pp.
1041
1046
.
15.
Rahman
,
M. H.
,
Saad
,
M.
,
Kenné
,
J.-P.
, and
Archambault
,
P. S.
,
2010
, “
Exoskeleton Robot for Rehabilitation of Elbow and Forearm Movements
,”
18th Mediterranean Conference on Control and Automation, MED’10
,
Marrakech, Morocco
,
June 23–25
, Vol. 1, pp.
1567
1572
.
16.
Teasell
,
R. W.
, and
Kalra
,
L.
,
2004
, “
What's New in Stroke Rehabilitation
,”
Stroke
,
35
(
2
), pp.
383
385
.
17.
Agrawal
,
V.
,
Peine
,
W. J.
,
Yao
,
B.
, and
Choi
,
S.
,
2010
, “
Control of Cable Actuated Devices Using Smooth Backlash Inverse
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, pp.
1074
1079
.
18.
Jeong
,
U.
,
Kim
,
K.
,
Kim
,
S.-H.
,
Choi
,
H.
,
Youn
,
B. D.
, and
Cho
,
K.-J.
,
2020
, “
Reliability Analysis of a Tendon-Driven Actuation for Soft Robots
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
494
511
.
19.
Dežman
,
M.
,
Asfour
,
T.
,
Ude
,
A.
, and
Gams
,
A.
,
2019
, “
Exoskeleton Arm Pronation/Supination Assistance Mechanism With a Guided Double Rod System
,”
IEEE Xplore
,
Toronto, ON, Canada
,
Oct. 15–17
, pp.
559
564
.
20.
Cui
,
X.
,
Chen
,
W.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2017
, “
Design of a 7-DOF Cable-Driven Arm Exoskeleton (CAREX-7) and a Controller for Dexterous Motion Training or Assistance
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
161
172
.
21.
Matthew
,
R. P.
,
Mica
,
E. J.
,
Meinhold
,
W.
,
Loeza
,
J. A.
,
Tomizuka
,
M.
, and
Bajcsy
,
R.
,
2015
, “
Introduction and Initial Exploration of an Active/Passive Exoskeleton Framework for Portable Assistance
,”
IEEE Xplore
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
5351
5356
.
22.
Palli
,
G.
, and
Melchiorri
,
C.
,
2006
, “
Model and Control of Tendon-Sheath Transmission Systems
,”
Proceedings 2006 IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–19
, pp.
988
993
.
23.
Agrawal
,
V.
,
Peine
,
W. J.
, and
Yao
,
B.
,
2010
, “
Modeling of Transmission Characteristics Across a Cable-Conduit System
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
914
924
.
24.
Sun
,
Z.
,
Wang
,
Z.
, and
Phee
,
S. J.
,
2014
, “
Elongation Modeling and Compensation for the Flexible Tendon–Sheath System
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1243
1250
.
25.
Jeong
,
U.
, and
Cho
,
K.-J.
,
2015
, “
Feedforward Friction Compensation of Bowden-Cable Transmission Via Loop Routing
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
5948
5953
.
26.
Phee
,
S. J.
,
Low
,
S. C.
,
Dario
,
P.
, and
Menciassi
,
A.
,
2010
, “
Tendon Sheath Analysis for Estimation of Distal End Force and Elongation for Sensorless Distal End
,”
Robotica
,
28
(
7
), pp.
1073
1082
.
27.
Chiang
,
L. S.
,
Jay
,
P. S.
,
Valdastri
,
P.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2009
, “
Tendon Sheath Analysis for Estimation of Distal End Force and Elongation
,”
2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Singapore
,
July 14–17
, pp.
332
337
.
28.
Schiele
,
A.
,
Letier
,
P.
,
Van Der Linde
,
R.
, and
Van Der Helm
,
F.
,
2006
, “
Bowden Cable Actuator for Force-Feedback Exoskeletons
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems 2006
,
Beijing, China
,
Oct. 9–15
, pp.
3599
3604
.
29.
Veneman
,
J. F.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
,
van der Helm
,
F. C. T.
, and
van der Kooij
,
H.
,
2006
, “
A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots
,”
Int. J. Rob. Res.
,
25
(
3
), pp.
261
281
.
30.
Nozaki
,
T.
,
Mizoguchi
,
T.
, and
Ohnishi
,
K.
,
2012
, “
Bilateral Control Method for Tendon-Driven Mechanism Considering Wire Elongation
,”
IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society
,
Montreal, QC, Canada
,
Oct. 25–28
, Vol. 28, pp.
2662
2667
.
31.
Cuvillon
,
L.
,
Weber
,
X.
, and
Gangloff
,
J.
,
2020
, “
Modal Control for Active Vibration Damping of Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051004
.
32.
Soubeyrand
,
M.
,
Assabah
,
B.
,
Bégin
,
M.
,
Laemmel
,
E.
,
Dos Santos
,
A.
, and
Crézé
,
M.
,
2017
, “
Pronation and Supination of the Hand: Anatomy and Biomechanics
,”
Hand Surg. Rehabil.
,
36
(
1
), pp.
2
11
.
33.
Aizawa
,
J.
,
Masuda
,
T.
,
Hyodo
,
K.
,
Jinno
,
T.
,
Yagishita
,
K.
,
Nakamaru
,
K.
,
Koyama
,
T.
, and
Morita
,
S.
,
2013
, “
Ranges of Active Joint Motion for the Shoulder, Elbow, and Wrist in Healthy Adults
,”
Disabil. Rehabil.
,
35
(
16
), pp.
1342
1349
.
34.
Dias
,
E. A. F.
, and
Andrade
,
R. M.
,
2020
, “
Design of a Cable-Driven Actuator for Pronation and Supination of the Forearm to Integrate an Active Arm Orthosis
,”
Proceedings of 1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications
,
Nov. 23–27
. https://iecat2020.sciforum.net/
35.
Pehlivan
,
A. U.
,
Rose
,
C. A.
, and
O’Malley
,
M. K.
,
2013
, “
System Characterization of RiceWrist-S: A Forearm-Wrist Exoskeleton for Upper Extremity Rehabilitation
,”
2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR)
,
Seattle, WA
,
June 24–26
, pp.
1
6
.
36.
Matsuki
,
K. O.
,
Matsuki
,
K.
,
Mu
,
S.
,
Sasho
,
T.
,
Nakagawa
,
K.
,
Ochiai
,
N.
,
Takahashi
,
K.
, and
Banks
,
S. A.
,
2010
, “
In Vivo 3D Kinematics of Normal Forearms: Analysis of Dynamic Forearm Rotation
,”
Clin. Biomech.
,
25
(
10
), pp.
979
983
.
37.
Siciliano
,
B.
, and
Khatib
,
O.
,
2016
,
Springer Handbook of Robotics
,
Springer
,
Berlin
.
38.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Rolling Bearing Analysis. [1], Essential Concepts of Bearing Technology
,
CRC Press, Taylor and Francis
,
Boca Raton, FL
.
39.
Abad
,
M. S. A.
,
Shooshtari
,
A.
,
Esmaeili
,
V.
, and
Riabi
,
A. N.
,
2013
, “
Nonlinear Analysis of Cable Structures Under General Loadings
,”
Finite Elem. Anal. Des.
,
73
, pp.
11
19
.
40.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
2005
,
Applied Nonlinear Control
,
Pearson Education
,
Taipei
.
41.
Proietti
,
T.
,
Jarrassé
,
N.
,
Roby-Brami
,
A.
, and
Morel
,
G.
,
2015
, “
Adaptive Control of a Robotic Exoskeleton for Neurorehabilitation
,”
2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)
,
Montpellier, France
,
Apr. 22–24
, IEEE, pp.
803
806
.
You do not currently have access to this content.