Abstract

Extending the workspace of cable robots can enhance their motion ability and help us make fuller use of their potential. This work designs a novel cable robot and utilizes cable slackness to extend its workspace. First, we use driving cables actuated by main motors and constrained cables driven by auxiliary motors equipped with lockers to control and restrain the motion of the end-effector, respectively. Then we classify the constraints on the end-effector into different modes according to the slackness of different constrained cables whose lengths can be changed by auxiliary motors, and continuous tension distribution (realized by tensioning devices) is applied to switch among them. To expand the mechanism’s workspace, the properties of the constraint mode series are analyzed and the static reachable workspace associated with it is defined, which guarantees the existence of feasible point-to-point trajectories. In particular, tree-based basic and general constraint mode series connection algorithms are designed to connect two targets in the static reachable workspace efficiently considering the necessary condition for the existence of the connection. After that, dual workspaces and subspace-based motion planning algorithms are designed to connect multiple targets in the static reachable workspace of the mechanism, and the quality of the trajectories is improved by using different manipulations of the constraint mode series. Since only driving cables are actuated by real-time capable servo motors and passively constrained cables are adopted to compensate for the weight of the end-effector, the size and the number of actuators and the energy consumption of the robot are reduced. Finally, the performance of the mechanism designed and the motion planning methods proposed are verified numerically under practical modeling errors regarding the cable elongation phenomenon.

References

1.
Izard
,
J.-B.
,
Gouttefarde
,
M.
,
Baradat
,
C.
,
Culla
,
D.
, and
Sallé
,
D.
,
2013
, “Integration of a Parallel Cable-Driven Robot on an Existing Building Façade,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer
,
Heidelberg, Germany
, pp.
149
164
.
2.
Merlet
,
J.-P.
, and
Daney
,
D.
,
2010
, “
A Portable, Modular Parallel Wire Crane for Rescue Operations
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
,
IEEE
, pp.
2834
2839
.
3.
Horoub
,
M. M.
,
Hassan
,
M.
, and
Hawwa
,
M. A.
,
2018
, “
Workspace Analysis of a Gough-Stewart Type Cable Marine Platform Subjected to Harmonic Water Waves
,”
Mech. Mach. Theory
,
120
(
2
), pp.
314
325
.
4.
Nguyen
,
D. Q.
,
Gouttefarde
,
M.
,
Company
,
O.
, and
Pierrot
,
F.
,
2014
, “
On the Analysis of Large-Dimension Reconfigurable Suspended Cable-Driven Parallel Robots
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
,
IEEE
, pp.
5728
5735
.
5.
Merlet
,
J.-P.
,
2005
,
Parallel Robots
, Vol.
128
,
Springer Science & Business Media
,
Dordrecht, Netherlands
.
6.
Siciliano
,
B.
, and
Khatib
,
O.
,
2016
,
Springer Handbook of Robotics
,
Springer
,
Berlin, Germany
.
7.
Oh
,
S.-R.
, and
Agrawal
,
S. K.
,
2005
, “
Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tensions
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
457
465
.
8.
Khakpour
,
H.
,
Birglen
,
L.
, and
Tahan
,
S.-A.
,
2014
, “
Synthesis of Differentially Driven Planar Cable Parallel Manipulators
,”
IEEE Trans. Rob.
,
30
(
3
), pp.
619
630
.
9.
Khakpour
,
H.
,
Birglen
,
L.
, and
Tahan
,
S.-A.
,
2015
, “
Analysis and Optimization of a New Differentially Driven Cable Parallel Robot
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
034503
.
10.
Carricato
,
M.
, and
Abbasnejad
,
G.
,
2013
, “Direct Geometrico-Static Analysis of Under-Constrained Cable-Driven Parallel Robots With 4 Cables,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer
,
Heidelberg, Germany
, pp.
269
285
.
11.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2019
, “
Dynamically Feasible Motions of a Class of Purely-Translational Cable-Suspended Parallel Robots
,”
Mech. Mach. Theory
,
132
(
2
), pp.
193
206
.
12.
Yamamoto
,
M.
,
Yanai
,
N.
, and
Mohri
,
A.
,
2004
, “
Trajectory Control of Incompletely Restrained Parallel-Wire-Suspended Mechanism Based on Inverse Dynamics
,”
IEEE Trans. Rob.
,
20
(
5
), pp.
840
850
.
13.
Zhang
,
N.
,
Shang
,
W.
, and
Cong
,
S.
,
2017
, “
Design and Analysis of an Under-Constrained Reconfigurable Cable-Driven Parallel Robot
,”
2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM)
,
Ningbo, China
,
Nov. 19–21
,
IEEE
, pp.
13
18
.
14.
Gagliardini
,
L.
,
Caro
,
S.
,
Gouttefarde
,
M.
, and
Girin
,
A.
,
2016
, “
Discrete Reconfiguration Planning for Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
100
(
7
), pp.
313
337
.
15.
Barbazza
,
L.
,
Oscari
,
F.
,
Minto
,
S.
, and
Rosati
,
G.
,
2017
, “
Trajectory Planning of a Suspended Cable-Driven Parallel Robot With Reconfigurable End Effector
,”
Rob. Comput. Integr. Manuf.
,
48
(
6
), pp.
1
11
.
16.
Zhang
,
N.
,
2021
, “Research on Motion Planning for Cable Robots,” Doctoral dissertation,
University of Science and Techonology of China
,
An Hui, China
.
17.
Zhang
,
N.
,
Shang
,
W.
, and
Cong
,
S.
,
2016
, “
Geometry-Based Trajectory Planning of a 3-3 Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
484
491
.
18.
Gasparetto
,
A.
,
Boscariol
,
P.
,
Lanzutti
,
A.
, and
Vidoni
,
R.
,
2012
, “
Trajectory Planning in Robotics
,”
Math. Comput. Sci.
,
6
(
3
), pp.
269
279
.
19.
Boschetti
,
G.
,
Carbone
,
G.
, and
Passarini
,
C.
,
2019
, “
Cable Failure Operation Strategy for a Rehabilitation Cable-Driven Robot
,”
Robotics
,
8
(
1
), p.
17
.
20.
Berti
,
A.
,
Gouttefarde
,
M.
, and
Carricato
,
M.
,
2018
, “Dynamic Recovery of Cable-Suspended Parallel Robots After a Cable Failure,”
Advances in Robot Kinematics 2016
,
J.
Lenarčič
and
J. P.
Merlet
, eds.,
Springer
,
Gewerbestrasse, Switzerland
, pp.
331
339
.
21.
Cone
,
L. L.
,
1985
, “
Skycam: An Aerial Robotic Camera System
,”
Byte
,
10
(
10
), pp.
122
132
.
22.
Kawamura
,
S.
,
1995
, “
Development of an Ultrahigh Speed Robot Falcon Using Wire Drive System
,”
IEEE International Conference on Robotics and Automation
,
Nagoya, Japan
,
May 21–27
, pp.
215
220
.
23.
Miermeister
,
P.
,
Lächele
,
M.
,
Boss
,
R.
,
Masone
,
C.
,
Schenk
,
C.
,
Tesch
,
J.
,
Kerger
,
M.
,
Teufel
,
H.
,
Pott
,
A.
, and
Bülthoff
,
H. H.
,
2016
, “
The Cable Robot Simulator Large Scale Motion Platform Based on Cable Robot Technology
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
,
IEEE
, pp.
3024
3029
.
24.
Plooij
,
M.
,
Mathijssen
,
G.
,
Cherelle
,
P.
,
Lefeber
,
D.
, and
Vanderborght
,
B.
,
2015
, “
Lock Your Robot: A Review of Locking Devices in Robotics
,”
IEEE Rob. Autom. Mag.
,
22
(
1
), pp.
106
117
.
25.
Zhang
,
N.
,
Shang
,
W.
, and
Cong
,
S.
,
2018
, “
Dynamic Trajectory Planning for a Spatial 3-dof Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
122
(
4
), pp.
177
196
.
26.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
2017
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
27.
Zhang
,
N.
, and
Shang
,
W.
,
2016
, “
Dynamic Trajectory Planning of a 3-DOF Under-Constrained Cable-Driven Parallel Robot
,”
Mech. Mach. Theory
,
98
(
4
), pp.
21
35
.
28.
Trevisani
,
A.
,
2010
, “
Underconstrained Planar Cable-Direct-Driven Robots: A Trajectory Planning Method Ensuring Positive and Bounded Cable Tensions
,”
Mechatronics
,
20
(
1
), pp.
113
127
.
29.
Trevisani
,
A.
,
2013
, “Experimental Validation of a Trajectory Planning Approach Avoiding Cable Slackness and Excessive Tension in Underconstrained Translational Planar Cable-Driven Robots,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer
,
Heidelberg, Germany
, pp.
23
39
.
30.
Bobrow
,
J. E.
,
Dubowsky
,
S.
, and
Gibson
,
J.
,
1985
, “
Time-Optimal Control of Robotic Manipulators Along Specified Paths
,”
Int. J. Rob. Res.
,
4
(
3
), pp.
3
17
.
31.
Lockwood
,
E. H.
,
1967
,
A Book of Curves
,
Cambridge University Press
,
Cambridge, MA
.
32.
Bordalba
,
R.
,
Ros
,
L.
, and
Porta
,
J. M.
,
2020
, “
A Randomized Kino-Dynamic Planner for Closed-Chain Robotic Systems
,”
IEEE Trans. Rob.
,
37
(
1
), pp.
99
115
.
33.
Bohigas
,
O.
,
Manubens
,
M.
, and
Ros
,
L.
,
2016
, “
Planning Wrench-Feasible Motions for Cable-Driven Hexapods
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
442
451
.
34.
Preparata
,
F. P.
, and
Shamos
,
M. I.
,
2012
,
Computational Geometry: An Introduction
,
Springer Science & Business Media
,
New York
.
35.
Shen
,
Y.
,
Jia
,
Q.
,
Chen
,
G.
,
Wang
,
Y.
, and
Sun
,
H.
,
2015
, “
Study of Rapid Collision Detection Algorithm for Manipulator
,”
2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)
,
Auckland, New Zealand
,
June 15–17
,
IEEE
, pp.
934
938
.
36.
Merlet
,
J.-P.
, and
Daney
,
D.
,
2006
, “
Legs Interference Checking of Parallel Robots Over a Given Workspace or Trajectory
,”
Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006, ICRA 2006
,
Orlando, FL
,
May 15–19
,
IEEE
, pp.
757
762
.
37.
LaValle
,
S. M.
,
1998
, “
Rapidly-Exploring Random Trees: A New Tool for Path Planning
,” Research Report 9811, Department of Computer Science, Iowa State University.
38.
Kajita
,
S.
,
Hirukawa
,
H.
,
Harada
,
K.
, and
Yokoi
,
K.
,
2014
,
Introduction to Humanoid Robotics
, Vol.
101
,
Springer
,
New York
.
39.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer
,
New York
.
40.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge University Press
,
Cambridge, MA
.
41.
Kuffner
,
J. J.
, and
LaValle
,
S. M.
,
2000
, “
RRT-Connect: An Efficient Approach to Single-Query Path Planning
,”
Proceedings 2000 ICRA, Millennium Conference, IEEE International Conference on Robotics and Automation, Symposia Proceedings (Cat. No. 00CH37065)
, Vol.
2
,
San Francisco, CA
,
Apr. 24–28
,
IEEE
, pp.
995
1001
.
42.
Choset
,
H.
,
Lynch
,
K. M.
,
Hutchinson
,
S.
,
Kantor
,
G. A.
, and
Burgard
,
W.
,
2005
,
Principles of Robot Motion: Theory, Algorithms, and Implementations
,
MIT Press
,
Cambridge, MA
.
You do not currently have access to this content.