Abstract

This paper presents the design, analysis, and development of a novel four degrees of freedom (4-DOF) endoscopic robot with cable-driven multisegment flexible continuum mechanisms. The endoscopic robot is mainly composed of the passive positioning arm, cable-pulley system, and 3-DOF flexible continuum mechanism. The forward and inverse kinematics of the endoscopic robot are derived based on the constant curvature assumption, and its working space, flexibility, and preoperative incision determination method are analyzed as well. Based on the hardware structure of the robot system, a control strategy and a control software are developed, and the continuum mechanism is kinematically calibrated to carry out the trajectory planning experiment and simulated surgery experiment. The experimental results show that the calibrated constant curvature model can be used for the motion control of the continuum mechanism, and the 4-DOF endoscopic robot can meet the visual field requirements of minimally invasive surgery.

References

1.
Nisar
,
S.
,
Endo
,
T.
, and
Matsuno
,
F.
,
2017
, “
Design and Kinematic Optimization of a Two Degrees-of-Freedom Planar Remote Center of Motion Mechanism for Minimally Invasive Surgery Manipulators
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031013
.
2.
Chen
,
G.
,
Wang
,
J.
, and
Wang
,
H.
,
2019
, “
A New Type of Planar Two Degree-of-Freedom Remote Center-of-Motion Mechanism Inspired by the Peaucellier–Lipkin Straight-Line Linkage
,”
ASME J. Mech. Des.
,
141
(
1
), p.
015001
.
3.
Ballantyne
,
G. H.
, and
Moll
,
F.
,
2003
, “
The Da Vinci Telerobotic Surgical System: The Virtual Operative Field and Telepresence Surgery
,”
Surg. Clin.
,
83
(
6
), pp.
1293
1304
.
4.
Gulati
,
S.
,
Jung
,
E. H.
, and
Kapoor
,
C.
,
2007
, “
Execution Engine for Robotic Surgery Support Functions in an Unmanned Operating Room
,”
Proceedings of 2007 International Symposium on Computational Intelligence in Robotics and Automation
,
Jacksonville, FL
,
June 20–23
, pp.
404
409
.
5.
Noonan
,
D. P.
,
Mylonas
,
G. P.
,
Darzi
,
A.
, and
Yang
,
G. Z.
,
2008
, “
Gaze Contingent Articulated Robot Control for Robot Assisted Minimally Invasive Surgery
,”
Proceedings of 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice
,
Sept. 22–26
, pp.
1186
1191
.
6.
Brahmbhatt
,
J. V.
,
Gudeloglu
,
A.
,
Liverneaux
,
P.
, and
Parekattil
,
S. J.
,
2014
, “
Robotic Microsurgery Optimization
,”
Arch. Plast. Surg.
,
41
(
3
), pp.
225
230
.
7.
Peters
,
B. S.
,
Armijo
,
P. R.
,
Krause
,
C.
,
Choudhury
,
S. A.
, and
Oleynikov
,
D.
,
2018
, “
Review of Emerging Surgical Robotic Technology
,”
Surg. Endosc.
,
32
(
4
), pp.
1636
1655
.
8.
Xu
,
K.
,
Zhao
,
J.
, and
Fu
,
M.
,
2014
, “
Development of the SJTU Unfoldable Robotic System (SURS) for Single Port Laparoscopy
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2133
2145
.
9.
Lee
,
D. H.
,
Hwang
,
M.
, and
Kwon
,
D. S.
,
2019
, “
Robotic Endoscopy System (EasyEndo) With a Robotic Arm Mountable on a Conventional Endoscope
,”
Proceedings of 2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC
,
May 22–24
, pp.
367
372
.
10.
Luo
,
R. C.
,
Wang
,
J.
,
Tsai
,
J. Y.
,
Lee
,
K. M.
, and
Perng
,
Y. W.
,
2015
, “
Robotic Flexible Laparoscope With Position Retrieving System for Assistive Minimally Invasive Surgery
,”
Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg
,
Sept. 28-Oct. 02
, pp.
2024
2029
.
11.
Ma
,
X.
,
Song
,
C.
,
Chiu
,
P. W.
, and
Li
,
Z.
,
2019
, “
Autonomous Flexible Endoscope for Minimally Invasive Surgery With Enhanced Safety
,”
IEEE Robot. Autom. Lett.
,
4
(
3
), pp.
2607
2613
.
12.
Zhang
,
X.
,
Li
,
W.
,
Chiu
,
P. W. Y.
, and
Li
,
Z.
,
2020
, “
A Novel Flexible Robotic Endoscope With Constrained Tendon-Driven Continuum Mechanism
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
1366
1372
.
13.
Zhang
,
H.
,
Li
,
X.
,
Ding
,
S.
,
Yang
,
S.
,
Li
,
L.
, and
Qiu
,
Y.
,
2019
, “
A Novel Dynamic Filed Tracking Algorithm of Mirror-Holding Robot for Minimally Invasive Surgery
,”
Proceedings of 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Hong Kong
,
July 08–12
, pp.
948
953
.
14.
Wang
,
Z.
,
Bao
,
S.
,
Wang
,
D.
,
Qian
,
S.
,
Zhang
,
J.
, and
Hai
,
M.
,
2023
, “
Design of a Novel Flexible Robotic Laparoscope Using a Two Degrees-of-Freedom Cable-Driven Continuum Mechanism With Major Arc Notches
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
064502
.
15.
Li
,
L.
,
Li
,
X.
,
Ouyang
,
B.
,
Ding
,
S.
,
Yang
,
S.
, and
Qu
,
Y.
,
2021
, “
Autonomous Multiple Instruments Tracking for Robot-Assisted Laparoscopic Surgery With Visual Tracking Space Vector Method
,”
IEEE/ASME Trans. Mechatron.
,
27
(
2
), pp.
733
743
.
16.
Sun
,
Y.
,
Pan
,
B.
,
Fu
,
Y.
, and
Cao
,
F.
,
2020
, “
Development of a Novel Intelligent Laparoscope System for Semi-Automatic Minimally Invasive Surgery
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
16
(
1
), p.
e2049
.
17.
Sun
,
Y.
,
Pan
,
B.
,
Fu
,
Y.
, and
Niu
,
G.
,
2020
, “
Visual-Based Autonomous Field of View Control of Laparoscope With Safety-RCM Constraints for Semi-Autonomous Surgery
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
16
(
2
), p.
e2079
.
18.
Li
,
S. Y.
, and
Hao
,
G. B.
,
2021
, “
Current Trends and Prospects in Compliant Continuum Robots: A Survey
,”
Actuators
,
10
(
7
), p.
145
.
19.
Yoshida
,
S.
,
Kanno
,
T.
, and
Kawashima
,
K.
,
2018
, “
Surgical Robot With Variable Remote Center of Motion Mechanism Using Flexible Structure
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031011
.
20.
Wang
,
L.
, and
Simaan
,
N.
,
2019
, “
Geometric Calibration of Continuum Robots: Joint Space and Equilibrium Shape Deviations
,”
IEEE Trans. Robot.
,
35
(
2
), pp.
387
402
.
21.
Kim
,
Y.
,
Parada
,
G. A.
,
Liu
,
S.
, and
Zhao
,
X.
,
2019
, “
Ferromagnetic Soft Continuum Robots
,”
Sci. Robot.
,
4
(
33
), p.
eaax7329
.
22.
Kolachalama
,
S.
, and
Lakshmanan
,
S.
,
2020
, “
Continuum Robots for Manipulation Applications: A Survey
,”
J. Robot.
,
2020
(
5
), pp.
1
19
.
23.
Vandini
,
A.
,
Bergeles
,
C.
,
Glocker
,
B.
,
Giataganas
,
P.
, and
Yang
,
G. Z.
,
2017
, “
Unified Tracking and Shape Estimation for Concentric Tube Robots
,”
IEEE Trans. Robot.
,
33
(
4
), pp.
901
915
.
24.
Iyengar
,
K.
,
Dwyer
,
G.
, and
Stoyanov
,
D.
,
2020
, “
Investigating Exploration for Deep Reinforcement Learning of Concentric Tube Robot Control
,”
Int. J. Comput. Assist. Radiol. Surg.
,
15
(
7
), pp.
1157
1165
.
25.
Zhang
,
X.
,
Li
,
W.
,
Ng
,
W. Y.
,
Huang
,
Y.
,
Xian
,
Y.
,
Chiu
,
P. W. Y.
, and
Li
,
Z.
,
2021
, “
An Autonomous Robotic Flexible Endoscope System With a DNA-Inspired Continuum Mechanism
,”
Proceedings of 2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an
,
May 30–June 05
, pp.
12055
12060
.
26.
Wei
,
H.
,
Tan
,
W.
,
Li
,
K.
, and
Xu
,
D.
,
2019
, “
Design and Modeling of a Magnetically Actuated Laparoscopic Robot
,”
Proceedings of 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
Xi'an, China
,
June 19–21
, pp.
149
154
.
27.
Xu
,
D.
,
Zhang
,
Y.
,
Tan
,
W.
,
Wei
,
H.
, and
Xu
,
P.
,
2020
, “
Design and Implementation of a Magnetic Actuated Capsule Camera Robot System for Single Incision Laparoscopic Surgery
,”
Proceedings of 2020 IEEE 18th International Conference on Industrial Informatics (INDIN)
,
Warwick
,
July 20–23
, pp.
225
230
.
28.
Zeng
,
W.
,
Yan
,
J.
,
Huang
,
X.
, and
Shin Cheng
,
S.
,
2021
, “
Motion Coupling Analysis for the Decoupled Design of a Two-Segment Notched Continuum Robot
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an
,
30 May–05 June
, pp.
7665
7671
.
29.
Wu
,
H.
,
Yu
,
J.
,
Pan
,
J.
,
Ge
,
G.
, and
Pei
,
X.
,
2022
, “
A New Geometric Method for Solving the Inverse Kinematics of Two-Segment Continuum Robot
,”
Proceedings of 2022 15th International Conference on Intelligent Robotics and Applications (ICIRA)
,
Harbin, China
,
Aug. 1–3
, pp.
101
112
.
30.
Chitalia
,
Y.
,
Jeong
,
S.
,
Yamamoto
,
K. K.
,
Chern
,
J. J.
, and
Desai
,
J. P.
,
2021
, “
Modeling and Control of a 2-DoF Meso-Scale Continuum Robotic Tool for Pediatric Neurosurgery
,”
IEEE Trans. Robot.
,
37
(
2
), pp.
520
531
.
31.
Gilbert
,
H. B.
,
2021
, “
On the Mathematical Modeling of Slender Biomedical Continuum Robots
,”
Front. Robot. AI
,
8
, p.
732643
.
You do not currently have access to this content.