Abstract

Interior assembling inside the cabin of an aircraft requires assembling robot to be light-weight and able to carry heavy payload. This paper proposed a hybrid robot and carried out its optimal design and experiments. The robot consists of a 1T2R parallel module and a 2T serial module. In the parallel module, the first limb is composed of a slider crank mechanism and a RS link. The other two limbs are PRS limbs. Herein, R, S, P are revolute, spherical, and actuated prismatic joints. Optimization of the robot concerns motion/force transmissibility, total mass, and stiffness. Hence, kinematic, stiffness, and mass modeling are implemented, and then the Pareto-based multi-objective optimization. Objective arrangements are discussed by concerning (1) the conflicting relation between mass and the minimal linear stiffness along z-axis and (2) the overall stiffness performance. After comparing six multi-objective optimizations, it is found that simultaneously regarding mass and minimal linear stiffness along z-axis as objectives is beneficial for obtaining large payload-to-mass ratio, moreover having overall stiffness as objectives would lower the values of motion/force transmissibility and payload-to-mass ratio. Finally, optimization model having motion/force transmissibility, total mass, and minimal linear stiffness along z-axis as objectives is selected. The optimal payload-to-mass ratio is up to 13.2837. The five degrees-of-freedom hybrid robot is machined and assembled. Experiments on the workspace, repeatability, and load carrying capacity confirm the performances of the designed robot.

References

1.
Li
,
Y.
,
Xi
,
F.
,
Finistauri
,
D.
, and
Behdinan
,
K.
,
2010
, “
Dynamic Modeling and Analysis of a Circular Track-Guided Tripod
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p. 011005.
2.
Ramadoss
,
V.
,
Sagar
,
K.
,
Ikbal
,
M. S.
,
Zlatanov
,
D.
, and
Zoppi
,
M.
,
2021
, “
Modeling and Stiffness Evaluation of Tendon-Driven Robot for Collaborative Human–Robot Interaction
,”
IEEE International Conference on Intelligence and Safety for Robotics (ISR)
,
Nagoya, Japan
,
Mar. 4–6
, pp.
233
238
.
3.
Waldron
,
K. J.
, and
Hunt
,
K. H.
,
1987
, “
Series–Parallel Dualities in Actively Coordinated Mechanisms
,”
Int. J. Robot. Res.
,
10
(
5
), pp.
175
181
.
4.
Yang
,
S. F.
,
Sun
,
T.
, and
Huang
,
T.
,
2016
, “
Type Synthesis of Parallel Mechanisms Having 3T1R Motion With Variable Rotational Axis
,”
Mech. Mach. Theory
,
109
, pp.
220
230
.
5.
Cao
,
Y.
,
Zhou
,
H.
,
Qin
,
Y. L.
,
Liu
,
K.
,
Ji
,
W. X.
, and
Zhang
,
H.
,
2017
, “
Type Synthesis and Type Analysis of 3T2R Hybrid Mechanisms Via G(F) Set
,”
Int. J. Robot. Autom.
,
32
(
4
), pp.
220
230
.
6.
Chen
,
K. X.
,
Wang
,
M.
,
Huo
,
X. M.
,
Wang
,
P. F.
, and
Sun
,
T.
,
2023
, “
Topology and Dimension Synchronous Optimization Design of 5-DoF Parallel Robots for In-Situ Machining of Large-Scale Steel Components
,”
Mech. Mach. Theory
,
179
.
7.
Olazagoitia
,
J. L.
, and
Wyatt
,
S.
,
2007
, “
New PKM Tricept T9000 and Its Application to Flexible Manufacturing at Aerospace Industry
,” SAE Technical Paper, 2142, pp.
37
48
.
8.
Uriarte
,
L.
,
Zatarain
,
M.
,
Axinte
,
D.
,
Yage-Fabra
,
J.
,
Ihlenfeldt
,
S.
,
Eguia
,
J.
, and
Olarra
,
A.
,
2013
, “
Machine Tools for Large Parts
,”
CIRP Ann.
,
62
(
2
), pp.
731
750
.
9.
Chen
,
X.
,
Liu
,
X. J.
,
Xie
,
F. G.
, and
Sun
,
T.
,
2014
, “
A Comparison Study on Motion/Force Transmissibility of Two Typical 3-DOF Parallel Manipulators: The Sprint Z3 and A3 Tool Heads
,”
Int. J. Adv. Robot. Syst.
,
11
(
1
), p.
1
.
10.
Ye
,
H.
,
Wu
,
J.
, and
Wang
,
D.
,
2022
, “
A General Approach for Geometric Error Modeling of Over-Constrained Hybrid Robot
,”
Mech. Mach. Theory
,
176
.
11.
Zlatanov
,
D.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2012
, “
Constraint and Singularity Analysis of the Exechon Tripod
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conference and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12
, pp.
679
688
.
12.
Bi
,
Z. M.
, and
Jin
,
Y.
,
2007
, “
Kinematic Modeling of Exechon Parallel Kinematic Machine
,”
Robot. Comput. Integr. Manuf.
,
27
(
1
), pp.
186
193
.
13.
Liu
,
Q.
, and
Huang
,
T.
,
2019
, “
Inverse Kinematics of a 5-Axis Hybrid Robot With Non-Singular Tool Path Generation
,”
Robot. Comput. Integr. Manuf.
,
56
, pp.
140
148
.
14.
Yang
,
C.
,
Li
,
Q. C.
, and
Chen
,
Q. H.
,
2021
, “
Natural Frequency Analysis of Parallel Manipulators Using Global Independent Generalized Displacement Coordinates
,”
Mech. Mach. Theory
,
156
.
15.
Sun
,
T.
,
Zhai
,
Y. P.
,
Song
,
Y. M.
, and
Zhang
,
J. T.
,
2016
, “
Kinematic Calibration of a 3-DoF Rotational Parallel Manipulator Using Laser Tracker
,”
Robot. Comput. Integr. Manuf.
,
41
, pp.
78
91
.
16.
Sun
,
T.
, and
Yang
,
S. F.
,
2019
, “
An Approach to Formulate the Hessian Matrix for Dynamic Control of Parallel Robots
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
271
281
.
17.
Cui
,
J. X.
,
Wang
,
P. F.
,
Sun
,
T.
,
Ma
,
S.
,
Liu
,
S. B.
,
Kang
,
R. J.
, and
Guo
,
F.
,
2022
, “
Design and Experiments of a Novel Quadruped Robot With Tensegrity Legs
,”
Mech. Mach. Theory
,
171
.
18.
Sun
,
T.
,
Liang
,
D.
, and
Song
,
Y. M.
,
2018
, “
Singular-Perturbation-Based Nonlinear Hybrid Control of Redundant Parallel Robot
,”
IEEE Trans. Ind. Electron.
,
65
(
4
), pp.
3326
3336
.
19.
Liu
,
B.
,
Sha
,
L. S.
,
Huang
,
K.
,
Zhang
,
W. B.
, and
Yang
,
H. B.
,
2022
, “
A Topology Optimization Method for Collaborative Robot Lightweight Design Based on Orthogonal Experiment and Its Applications
,”
Int. J. Adv. Robot. Syst.
,
19
(
1
).
20.
Gao
,
Z.
, and
Zhang
,
D.
,
2015
, “
Performance Analysis, Mapping, and Multiobjective Optimization of a Hybrid Robotic Machine Tool
,”
IEEE Trans. Ind. Electron.
,
62
(
1
), pp.
423
424
.
21.
Sun
,
T.
, and
Huo
,
X. M.
,
2018
, “
Type Synthesis of 1T2R Parallel Mechanisms With Parasitic Motions
,”
Mech. Mach. Theory
,
128
, pp.
412
428
.
22.
Meng
,
J.
,
Liu
,
G.
, and
Li
,
Z.
,
2007
, “
A Geometric Theory for Analysis and Synthesis of Sub-6 DoF Parallel Manipulators
,”
IEEE Trans. Robot.
,
23
(
4
), pp.
625
649
.
23.
Jin
,
Y.
,
Bi
,
Z. M.
, and
Higgins
,
C.
,
2012
, “
Optimal Design of a New Parallel Kinematic Machine for Large Volume Machining
,”
Adv. Reconfig. Mech. Robots
, pp.
343
354
.
24.
Jiang
,
B. S.
,
Fang
,
H. R.
, and
Zhang
,
H. Q.
,
2021
, “
Type Synthesis and Dynamics Performance Evaluation of a Class of 5-DOF Redundantly Actuated Parallel Mechanisms
,”
Int. J. Autom. Comput.
,
18
(
1
), pp.
96
109
.
25.
Li
,
H. L.
,
Yao
,
J. T.
,
Wei
,
C. J.
,
Zhou
,
P.
,
Xu
,
Y. D.
, and
Zhao
,
Y. S.
,
2021
, “
An Untethered Soft Robotic Gripper With High Payload-to-Weight Ratio
,”
Mech. Mach. Theory
,
158
(
1
), pp.
135
141
.
26.
Ruiz
,
A.
,
Campa
,
F. J.
,
Roldán-Paraponiaris
,
C.
,
Altuzarra
,
O.
, and
Pinto
,
C.
,
2016
, “
Experimental Validation of the Kinematic Design of 3-PRS Compliant Parallel Mechanisms
,”
Mechatronics
,
39
, pp.
77
88
.
27.
Sun
,
T.
,
Song
,
Y. M.
,
Li
,
Y. G.
, and
Zhang
,
J.
,
2010
, “
Workspace Decomposition Based Dimensional Synthesis of a Novel Hybrid Reconfigurable Robot
,”
ASME J. Mech. Rob.
,
2
(
3
), p. 031009.
28.
Tsai
,
M. S.
, and
Yuan
,
W. H.
,
2010
, “
Inverse Dynamics Analysis for a 3-PRS Parallel Mechanism Based on a Special Decomposition of the Reaction Forces
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1491
1508
.
29.
Valles
,
M.
,
Cazalilla
,
J.
, and
Valera
,
A.
,
2017
, “
A 3-PRS Parallel Manipulator for Ankle Rehabilitation: Towards a Low-Cost Robotic Rehabilitation
,”
Robotica
,
35
(
10
), pp.
1939
1457
.
30.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
31.
Guo
,
S.
,
Fang
,
Y.
, and
Qu
,
H.
,
2012
, “
Type Synthesis of 4-DOF Nonoverconstrained Parallel Mechanisms Based on Screw Theory
,”
Robotica
,
30
(
1
), pp.
31
37
.
32.
Zeng
,
D. X.
, and
Huang
,
Z.
,
2011
, “
Type Synthesis of the Rotational Decoupled Parallel Mechanism Based on Screw Theory
,”
Sci. China Technol. Sci.
,
54
(
4
), pp.
998
1004
.
33.
Li
,
Q.
, and
Huang
,
Z.
,
2003
, “
Type Synthesis of 4-DOF Parallel Manipulators
,”
IEEE International Conference on Robotics and Automation, ICRA03
,
Taipei, Taiwan
,
Sept. 14–19
, IEEE, pp.
755
760
.
34.
Sun
,
F. W.
,
Zhao
,
J. W.
, and
Chen
,
G. Q.
,
2016
, “
Workspace and Structural Parameter Analysis for a Novel 3-PRS Parallel Mechanism
,”
Int. J. Hybrid Inform. Technol.
,
9
(
12
), pp.
1
8
.
35.
Yang
,
S. F.
,
Sun
,
T.
,
Huang
,
T.
,
Li
,
Q. C.
, and
Gu
,
D. B.
,
2016
, “
A Finite Screw Approach to Type Synthesis of Three-DOF Translational Parallel Mechanisms
,”
Mech. Mach. Theory
,
104
, pp.
405
419
.
36.
Sun
,
T.
,
Yang
,
S. F.
,
Huang
,
T.
, and
Dai
,
J. S.
,
2017
, “
A Way of Relating Instantaneous and Finite Screws Based on the Screw Triangle Product
,”
Mech. Mach. Theory
,
108
, pp.
75
82
.
37.
Bu
,
W.
,
Chen
,
J.
,
An
,
X.
, and
Liu
,
C.
,
2016
, “
The Pitch-Reciprocal Screw Relating a Twist and an Actuating Wrench
,”
World Congress on Intelligent Control and Automation (WCICA)
,
Guilin, China
,
June 12–15
, pp.
1537
1542
.
38.
Semaan
,
A.
,
Stéphane
,
C.
, and
Philippe
,
W.
,
2012
, “
Constraint and Singularity Analysis of the Exechon
,”
Appl. Mech. Mater.
,
1731
(
162
), pp.
141
150
.
39.
Chen
,
C.
,
Peng
,
F. Y.
,
Yan
,
R.
,
Li
,
Y. T.
,
Wei
,
D. Q.
,
Zheng
,
F.
,
Tang
,
X. W.
, and
Zhu
,
Z. R.
,
2019
, “
Stiffness Performance Index Based Posture and Feed Orientation Optimization in Robotic Milling Process
,”
Robot. Comput. Integr. Manuf.
,
55
, pp.
29
40
.
40.
Sun
,
T.
,
Yang
,
S. F.
,
Huang
,
T.
, and
Dai
,
J. S.
,
2018
, “
A Finite and Instantaneous Screw Based Approach for Topology Design and Kinematic Analysis of 5-Axis Parallel Kinematic Machines
,”
Chin. J. Mech. Eng.
,
31
(
2
), pp.
66
75
.
41.
Li
,
Y.
,
Xi
,
F.
,
Mohamed
,
R.
, and
Behdinan
,
K.
,
2011
, “
Dynamic Analysis for Robotic Integration of Tooling Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
4
), p. 041002.
42.
Chen
,
J.
,
Xie
,
F.
,
Liu
,
X.
, and
Bi
,
W.
,
2021
, “
Stiffness Evaluation of an Adsorption Robot for Large-Scale Structural Parts Processing
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040907
.
You do not currently have access to this content.