Abstract

This paper discusses stiffness and antagonistic actuation in light-weight cable-driven bio-inspired manipulators suitable for safe interactions. Manipulators under study are built upon arranging in series several tensegrity joints, called “modules.” A comparative study of several modules revealed that the X module, in contrast to modules based on pivots, allows one to increase joint stiffness by increasing antagonistic input forces like during muscle coactivation. For a planar manipulator with N modules, antagonistic actuation schemes with 2N and N + 1 cables are proposed and compared. It is shown that the N + 1 cable actuation scheme allows controlling both the manipulator configuration and joint stiffness satisfactorily. As compared with a manipulator with 2N active cables, one on each side of each module, higher forces are required to achieve the manipulator configuration. However, the N + 1 cable actuation scheme is a reasonable solution that allows reducing the moving masses and cost.

References

1.
Pontzer
,
H.
,
Raichlen
,
D. A.
, and
Sockol
,
M. D.
,
2009
, “
The Metabolic Cost of Walking in Humans, Chimpanzees, and Early Hominins
,”
J. Hum. Evol.
,
56
(
1
), pp.
43
54
.
2.
Seok
,
S.
,
Wang
,
A.
,
Chuah
,
M. Y.
,
Hyun
,
D. J.
,
Lee
,
J.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2018
, “
Design Principles for Energy-Efficient Legged Locomotion and Implementation on the Mit Cheetah Robot
,”
IEEE/ASME Trans. Mechatron.
,
20
(
3
), pp.
1117
1129
.
3.
Trivedi
,
D.
,
Rahn
,
C.
,
Kier
,
W.
, and
Parker
,
Y.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
.
4.
Hannan
,
M.
, and
Walker
,
I.
,
2000
, “
Analysis and Initial Experiments for a Novel Elephant’s Trunk Robot
,”
Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No. 00CH37113)
,
Takamatsu, Japan
,
Nov. 1–5
, Vol.
1
, pp.
330
337
.
5.
Guan
,
Q.
,
Sun
,
J.
,
Liu
,
Y.
,
Wereley
,
N. M.
, and
Leng
,
J.
,
2020
, “
Novel Bending and Helical Extensile/Contractile Pneumatic Artificial Muscles Inspired by Elephant Trunk
,”
Soft Rob.
,
7
(
5
), pp.
597
614
. PMID: 32130078.
6.
Liu
,
Y.
,
Ge
,
Z.
,
Yang
,
S.
,
Walker
,
I. D.
, and
Ju
,
Z.
,
2019
, “
Elephant’s Trunk Robot: An Extremely Versatile Under-Actuated Continuum Robot Driven by a Single Motor
,”
ASME J. Mech. Rob.
,
11
(5), p.
051008
.
7.
Laschi
,
C.
,
Cianchetti
,
M.
,
Mazzolai
,
B.
,
Margheri
,
L.
,
Follador
,
M.
, and
Dario
,
P.
,
2012
, “
Soft Robot Arm Inspired by the Octopus
,”
Adv. Rob.
,
26
(
7
), pp.
709
727
.
8.
Buckingham
,
R.
,
2002
, “
Snake Arm Robots
,”
Ind. Rob.
,
29
(
3
), pp.
242
245
.
9.
Porez
,
M.
,
Boyer
,
F.
, and
Ijspeert
,
A. J.
,
2014
, “
Improved Lighthill Fish Swimming Model for Bio-Inspired Robots: Modeling, Computational Aspects and Experimental Comparisons
,”
Int. J. Rob. Res.
,
33
(
10
), pp.
1322
1341
.
10.
Fasquelle
,
B.
,
Khanna
,
P.
,
Chevallereau
,
C.
,
Chablat
,
D.
,
Creusot
,
D.
,
Jolivet
,
S.
,
Lemoine
,
P.
, and
Wenger
,
P.
,
2022
, “
Identification and Control of a 3-X Cable-Driven Manipulator Inspired From the Bird Neck
,”
ASME J. Mech. Rob.
,
14
(
1
), p. 011005
11.
Skelton
,
R. E.
, and
De Oliveira
,
M. C.
,
2009
,
Tensegrity Systems
, Vol.
1
,
Springer
,
Dordrecht
.
12.
Arsenault
,
M.
,
2006
, “
Développement et analyse de mécanismes de tenségrité
,” Ph.D. thesis,
Université Laval
,
Québec, Canada
.
13.
Arsenault
,
M.
, and
Gosselin
,
C. M.
,
2006
, “
Kinematic, Static and Dynamic Analysis of a Planar 2-DOF Tensegrity Mechanism
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1072
1089
.
14.
Crane
,
C. D.
,
Bayat
,
J.
,
Vikas
,
V.
, and
Roberts
,
R.
,
2008
, “Kinematic Analysis of a Planar Tensegrity Mechanism With Pre-Stressed Springs,”
Advances in Robot Kinematics: Analysis and Design
,
J.
Lenarcic
and
W.
Philippe
, eds.,
Springer
,
Dordrecht, Germany
, pp.
419
427
.
15.
Bakker
,
D. L.
,
Matsuura
,
D.
,
Takeda
,
Y.
, and
Herder
,
J. L.
,
2015
, “
Design of an Environmentally Interactive Continuum Manipulator
,”
Proceedings of 14th World Congress in Mechanism and Machine Science, IFToMM
,
Taipei, Taiwan
,
Oct. 25–30
.
16.
Tsumaki
,
Y.
,
Suzuki
,
Y.
,
Sasaki
,
N.
,
Obara
,
E.
, and
Kanazawa
,
S.
,
2018
, “
A 7-DOF Wire-Driven Lightweight Arm With Wide Wrist Motion Range
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
1
9
.
17.
Kim
,
Y.-J.
,
2017
, “
Anthropomorphic Low-Inertia High-Stiffness Manipulator for High-Speed Safe Interaction
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1358
1374
.
18.
Furet
,
M.
, and
Wenger
,
P.
,
2019
, “
Kinetostatic Analysis and Actuation Strategy of a Planar Tensegrity 2-X Manipulator
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060904
.
19.
Zhao
,
W.
,
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2022
, “
Elastostatic Modeling of Multi-link Flexible Manipulator Based on Two-Dimensional Dual-Triangle Tensegrity Mechanism
,”
ASME J. Mech. Rob.
,
14
(2), p.
021002
.
20.
Begey
,
J.
,
Vedrines
,
M.
, and
Renaud
,
P.
,
2020
, “
Design of Tensegrity-Based Manipulators: Comparison of Two Approaches to Respect a Remote Center of Motion Constraint
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
1788
1795
.
21.
Alfalahi
,
H.
,
Renda
,
F.
, and
Stefanini
,
C.
,
2020
, “
Concentric Tube Robots for Minimally Invasive Surgery: Current Applications and Future Opportunities
,”
IEEE Trans. Med. Rob. Bionics
,
2
(
3
), pp.
410
424
.
22.
Chikhaoui
,
M. T.
,
Rabenorosoa
,
K.
, and
Andreff
,
N.
,
2016
, “
Kinematics and Performance Analysis of a Novel Concentric Tube Robotic Structure With Embedded Soft Micro-Actuation
,”
Mech. Mach. Theory
,
104
, pp.
234
254
.
23.
Hoang
,
T. T.
,
Phan
,
P. T.
,
Thai
,
M. T.
,
Lovell
,
N. H.
, and
Do
,
T. N.
,
2020
, “
Bio-Inspired Conformable and Helical Soft Fabric Gripper With Variable Stiffness and Touch Sensing
,”
Adv. Mater. Technol.
,
5
(
12
), p.
2000724
.
24.
She
,
Y.
,
Su
,
H.-J.
,
Meng
,
D.
, and
Lai
,
C.
,
2020
, “
Design and Modeling of a Continuously Tunable Stiffness Arm for Safe Physical Human–Robot Interaction
,”
ASME J. Mech. Rob.
,
12
(1), p.
011006
.
25.
Abourachid
,
A.
, and
Wenger
,
P.
,
2019
, “
Avineck, the Neck of the Bird, An Arm for the Robots
,”
Comput. Meth. Biomech. Biomed. Eng.
,
22
(
sup1
), pp.
S2
S3
. PMID: 31791153.
26.
Bohmer
,
C.
,
Prevoteau
,
J.
,
Duriez
,
O.
, and
Abourachid
,
A.
,
2020
, “
Gulper, Ripper and Scrapper: Anatomy of the Neck in Three Species of Vultures
,”
J. Anat.
,
236
(
4
), pp.
701
723
.
27.
Fasquelle
,
B.
,
Furet
,
M.
,
Khanna
,
P.
,
Chablat
,
D.
,
Chevallereau
,
C.
, and
Wenger
,
P.
,
2020
, “
A Bio-Inspired 3-DOF Light-Weight Manipulator With Tensegrity X-Joints
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
,
IEEE
, pp.
5054
5060
.
28.
Abourachid
,
A.
,
Gagnier
,
B.
,
Furet
,
M.
,
Cornette
,
R.
,
Delapre
,
A.
,
Hackert
,
R.
, and
Wenger
,
P.
,
2021
, “
Modeling Intervertebral Articulation: The Rotule à Doigt Mechanical Joint (rad) in Birds and Mammals
,”
J. Anat.
,
239
(
6
), pp.
1287
1299
.
29.
Hamon
,
A.
, and
Aoustin
,
Y.
,
2010
, “
Cross Four-Bar Linkage for the Knees of a Planar Bipedal Robot
,”
10th IEEE-RAS International Conference on Humanoid Robots
,
Nashville, TN
,
Dec. 8–10
, pp.
379
384
.
30.
Furet
,
M.
,
Abourachid
,
A.
,
Bohmer
,
C.
,
Chummunb
,
V.
,
Chevallereau
,
C.
,
Cornette
,
R.
,
Bernardie
,
X. D. L.
, and
Wenger
,
P.
,
2021
, “
Estimating Motion Between Avian Vertebrae by Contact Modeling of Joint Surfaces
,”
Comput. Meth. Biomech. Biomed. Eng.
,
25
(
2
), pp.
123
131
.
31.
Latash
,
M.
,
2018
, “
Muscle Coactivation: Definitions, Mechanisms, and Functions
,”
J. Neurophysiol.
,
120
(
1
), pp.
88
104
.
32.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D.
,
Carloni
,
R.
,
Catalano
,
M.
, et al.,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
33.
Jafari
,
A.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2011
, “
AWAS-II: A New Actuator With Adjustable Stiffness Based on the Novel Principle of Adaptable Pivot Point and Variable Lever Ratio
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
4638
4643
.
34.
Esteveny
,
L.
,
Barbé
,
L.
, and
Bayle
,
B.
,
2014
, “
A Novel Actuation Technology for Safe Physical Human-Robot Interactions
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
5032
5037
.
35.
Medina
,
J.
,
Lozano
,
P.
,
Ó
,
A.
, and
Balaguer
,
C.
,
2016
, “
Design and Characterization of a Novel Mechanism of Multiple Joint Stiffness (MMJS)
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
2444
2451
.
36.
Ham
,
R. V.
,
Sugar
,
T. G.
,
Vanderborght
,
B.
,
Hollander
,
K. W.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs
,”
IEEE Rob. Autom. Mag.
,
16
(
3
), pp.
81
94
.
37.
Zhou
,
X.
,
Jun
,
S.-K.
, and
Krovi
,
V.
,
2015
, “
A Cable Based Active Variable Stiffness Module With Decoupled Tension
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011005
.
38.
Kambic
,
R. E.
,
Biewener
,
A. A.
, and
Pierce
,
S. E.
,
2017
, “
Experimental Determination of Three-Dimensional Cervival Mobility in the Avian Neck
,”
Front. Zool.
,
14
, p.
37
.
39.
Todorov
,
T. S.
,
2002
, “
Synthesis of Four-Bar Mechanisms by Freudenstein–Chebyshev
,”
Mech. Mach. Theory
,
37
(
12
), pp.
1505
1512
.
40.
Guardiani
,
P.
,
Ludovico
,
D.
,
Pistone
,
A.
,
Abidi
,
H.
,
Zaplana
,
I.
,
Lee
,
J.
,
Caldwell
,
D. G.
, and
Canali
,
C.
,
2022
, “
Design and Analysis of a Fully Actuated Cable-Driven Joint for Hyper-Redundant Robots With Optimal Cable Routing
,”
ASME J. Mech. Rob.
,
14
(2), p.
021006
.
41.
Muralidharan
,
V.
, and
Wenger
,
P.
,
2021
, “
Optimal Design and Comparative Study of Two Antagonistically Actuated Tensegrity Joints
,”
Mech. Mach. Theory
,
159
, p.
104249
.
42.
Baratta
,
R.
,
Solomonow
,
B. Z. M.
,
Letson
,
D.
,
Chuinard
,
R.
, and
D’Ambrosia
,
R.
,
1988
, “
Muscular Coactivation, the Role of the Antagonist Musculature in Maintaining Knee Stability
,”
Am. J. Sports Med.
,
16
(
2
).
43.
Gatesy
,
S.
,
1999
, “
Guineafowl Hind Limb Function. Il : Electromyographic Analysis and Motor Pattern Evolution
,”
J. Morphol.
,
240
(
2
), pp.
127
142
.
44.
Terray
,
L.
,
Plateau
,
O.
,
Abourachid
,
A.
,
Böhmer
,
C.
,
Delapré
,
A.
,
la Bernardie
,
X. D.
, and
Cornette
,
R.
,
2020
, “
Modularity of the Neck in Birds (aves)
,”
Evol. Biol.
,
47
, pp.
97
110
.
45.
Krings
,
M.
,
Nyakatura
,
J. A.
,
Boumans
,
M. L.
,
Fischer
,
M. S.
, and
Wagner
,
H.
,
2017
, “
Barn Owls Maximize Head Rotations by a Combination of Yawing and Rolling in Functionally Diverse Regions of the Neck
,”
J. Anat.
,
231
(
1
), pp.
12
22
.
46.
Kim
,
Y.-J.
,
Kim
,
J.-I.
, and
Jang
,
W.
,
2018
, “
Quaternion Joint: Dexterous 3-DOF Joint Representing Quaternion Motion for High-Speed Safe Interaction
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
935
942
.
You do not currently have access to this content.