This paper presents the development of a new robotic tail based on a novel cable-driven universal joint mechanism. The novel joint mechanism is synthesized by geometric reasoning to achieve the desired cable length invariance property, wherein the mechanism maintains a constant length for the driving cables under universal rotation. This feature is preferable because it allows for the bidirectional pulling of the cables which reduces the requisite number of actuators. After obtaining this new joint mechanism, a serpentine robotic tail with fewer actuators, simpler controls, and a more robust structure is designed and integrated. The new tail includes two independent macro segments (2 degrees of freedom each) to generate more complex shapes (4 degrees of freedom total), which helps with improving the dexterity and versatility of the robot. In addition, the pitch bending and yaw bending of the tail are decoupled due to the perpendicular joint axes. The kinematic modeling, dynamic modeling, and workspace analysis are then explained for the new robotic tail. Three experiments focusing on statics, dynamics, and dexterity are conducted to validate the mechanism and evaluate the new robotic tail's performance.

References

1.
Proske
,
U.
,
1980
, “
Energy Conservation by Elastic Storage in Kangaroos
,”
Endeavour
,
4
(
4
), pp.
148
153
.
2.
Wilson
,
A. M.
,
Lowe
,
J. C.
,
Roskilly
,
K.
,
Hudson
,
P. E.
,
Golabek
,
K. A.
, and
McNutt
,
J. W.
,
2013
, “
Locomotion Dynamics of Hunting in Wild Cheetahs
,”
Nature
,
498
(
7453
), pp.
185
189
.
3.
Sfakiotakis
,
M.
,
Lane
,
D. M.
, and
Davies
,
J. B. C.
,
1999
, “
Review of Fish Swimming Modes for Aquatic Locomotion
,”
IEEE J. Oceanic Eng.
,
24
(
2
), pp.
237
252
.
4.
Young
,
J. W.
,
Russo
,
G. A.
,
Fellmann
,
C. D.
,
Thatikunta
,
M. A.
, and
Chadwell
,
B. A.
,
2015
, “
Tail Function During Arboreal Quadrupedalism in Squirrel Monkeys (Saimiri boliviensis) and Tamarins (Saguinus oedipus)
,”
J. Exp. Zool. Part A
,
323
(
8
), pp.
556
566
.
5.
Jusufi
,
A.
,
Kawano
,
D. T.
,
Libby
,
T.
, and
Full
,
R. J.
,
2010
, “
Righting and Turning in Mid-Air Using Appendage Inertia: Reptile Tails, Analytical Models and Bio-Inspired Robots
,”
Bioinspir. Biomim.
,
5
(
4
), p.
045001
.
6.
Libby
,
T.
,
Moore
,
T. Y.
,
Chang-Siu
,
E.
,
Li
,
D.
,
Cohen
,
D. J.
,
Jusufi
,
A.
, and
Full
,
R. J.
,
2012
, “
Tail-Assisted Pitch Control in Lizards, Robots and Dinosaurs
,”
Nature
,
481
(
7380
), p.
181
.
7.
Patel
,
A.
, and
Braae
,
M.
,
2013
, “
Rapid Turning at High-Speed: Inspirations From the Cheetah’s Tail
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
5506
5511
.
8.
Patel
,
A.
, and
Braae
,
M.
,
2014
, “
Rapid Acceleration and Braking: Inspirations From the Cheetah’s Tail
,”
IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
May 31–Jun. 7
, pp.
793
799
.
9.
Rone
,
W.
, and
Ben-Tzvi
,
P.
,
2016
, “
Dynamic Modeling and Simulation of a Yaw-Angle Quadruped Maneuvering With a Planar Robotic Tail
,”
J. Dyn. Syst. Meas. Control
,
138
(
8
), p.
084502
.
10.
Liu
,
Y.
, and
Ben-Tzvi
,
P.
,
2018
, “
Dynamic Modeling of a Quadruped With a Robotic Tail Using Virtual Work Principle
,” Proceedings of the IDETC/CIE,
Quebec City, Canada
,
Aug. 26–29
, p.
V05BT07A021
,
ASME
Paper No. DETC2018-86048.
11.
Patel
,
A.
, and
Boje
,
E.
,
2015
, “
On the Conical Motion of a Two-Degree-of-Freedom Tail Inspired by the Cheetah
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1555
1560
.
12.
Zhao
,
J.
,
Zhao
,
T.
,
Xi
,
N.
,
Mutka
,
M. W.
, and
Xiao
,
L.
,
2015
, “
MSU Tailbot: Controlling Aerial Maneuver of a Miniature-Tailed Jumping Robot
,”
IEEE/ASME Trans. Mechatron.
,
20
(
6
), pp.
2903
2914
.
13.
Chang-Siu
,
E.
,
Libby
,
T.
,
Tomizuka
,
M.
, and
Full
,
R. J.
,
2011
, “
A Lizard-Inspired Active Tail Enables Rapid Maneuvers and Dynamic Stabilization in a Terrestrial Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
1887
1894
.
14.
Liu
,
G. H.
,
Lin
,
H. Y.
,
Lin
,
H. Y.
,
Chen
,
S. T.
, and
Lin
,
P. C.
,
2014
, “
A Bio-Inspired Hopping Kangaroo Robot With an Active Tail
,”
J. Bionic Eng.
,
11
(
4
), pp.
541
555
.
15.
Briggs
,
R.
,
Lee
,
J.
,
Haberland
,
M.
, and
Kim
,
S.
,
2012
, “
Tails in Biomimetic Design: Analysis, Simulation, and Experiment
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Portugal
,
Oct. 7–12
, pp.
1473
1480
.
16.
De
,
A.
, and
Koditschek
,
D. E.
,
2015
, “
Parallel Composition of Templates for Tail-Energized Planar Hopping
,”
IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30
, pp.
4562
4569
.
17.
Hannan
,
M. W.
, and
Walker
,
I. D.
,
2003
, “
Kinematics and the Implementation of an Elephant’s Trunk Manipulator and Other Continuum Style Robots
,”
J. Rob. Syst.
,
20
(
2
), pp.
45
63
.
18.
Moses
,
M. S.
,
Kutzer
,
M. D. M.
,
Ma
,
H.
, and
Armand
,
M.
,
2013
, “
A Continuum Manipulator Made of Interlocking Fibers
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
4008
4015
.
19.
Kim
,
Y. J.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2014
, “
A Stiffness-Adjustable Hyperredundant Manipulator Using a Variable Neutral-Line Mechanism for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
30
(
2
), pp.
382
395
.
20.
Saab
,
W.
,
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2018
, “
Discrete Modular Serpentine Robotic Tail: Design, Analysis and Experimentation
,”
Robotica
,
36
(
7
), pp.
994
1018
.
21.
Rone
,
W. S.
,
Saab
,
W.
, and
Ben-Tzvi
,
P.
,
2018
, “
Design, Modeling, and Integration of a Flexible Universal Spatial Robotic Tail
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041001
.
22.
Saab
,
W.
,
Rone
,
W. S.
,
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2019
, “
Design and Integration of a Novel Spatial Articulated Robotic Tail
,”
IEEE/ASME Trans. Mechatron.
,
24
(
2
), pp.
434
446
.
23.
Rone
,
W. S.
,
Liu
,
Y.
, and
Ben-Tzvi
,
P.
,
2019
, “
Maneuvering and Stabilization Control of a Bipedal Robot With a Universal-Spatial Robotic Tail
,”
Bioinspir. Biomim.
,
14
(
1
), p.
016014
.
24.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2012
, “
Continuum Manipulator Statics Based on the Principle of Virtual Work
,” Proceedings of the IMECE,
Houston, TX
,
Nov. 9–15
, pp.
321
328
,
ASME
Paper No. IMECE2012-87675.
25.
Saab
,
W.
,
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2018
, “
Robotic Tails: A State-of-the-art Review
,”
Robotica
,
36
(
9
), pp.
1263
1277
.
26.
Lim
,
W. B.
,
Yeo
,
S. H.
,
Yang
,
G.
, and
Mustafa
,
S. K.
,
2009
, “
Kinematic Analysis and Design Optimization of a Cable-Driven Universal Joint Module
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Singapore, Singapore
,
July 14–17
, pp.
1933
1938
.
27.
Tang
,
L.
,
Wang
,
J.
,
Zheng
,
Y.
,
Gu
,
G.
,
Zhu
,
L.
, and
Zhu
,
X.
,
2017
, “
Design of a Cable-Driven Hyper-Redundant Robot With Experimental Validation
,”
Int. J. Adv. Rob. Syst.
,
14
(
5
), p.
1729881417734458
.
28.
Yigit
,
C. B.
, and
Boyraz
,
P.
,
2017
, “
Design and Modelling of a Cable-Driven Parallel-Series Hybrid Variable Stiffness Joint Mechanism for Robotics
,”
Mech. Sci.
,
8
(
1
), pp.
65
77
.
29.
Kim
,
Y. J.
,
2017
, “
Anthropomorphic Low-Inertia High-Stiffness Manipulator for High-Speed Safe Interaction
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1358
1374
.
30.
Liu
,
Y.
,
Kong
,
M.
,
Wan
,
N.
, and
Ben-Tzvi
,
P.
,
2018
, “
A Geometric Approach to Obtain the Closed-Form Forward Kinematics of H4 Parallel Robot
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051013
.
31.
Huang
,
T.
,
Li
,
Z.
,
Li
,
M.
,
Chetwynd
,
D. G.
, and
Gosselin
,
C. M.
,
2004
, “
Conceptual Design and Dimensional Synthesis of a Novel 2-DOF Translational Parallel Robot for Pick-and-Place Operations
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
449
455
.
32.
Patel
,
A.
,
Stocks
,
B.
,
Fisher
,
C.
,
Nicolls
,
F.
, and
Boje
,
E.
,
2017
, “
Tracking the Cheetah Tail Using Animal-Borne Cameras, GPS, and an IMU
,”
IEEE Sens Lett.
,
1
(
4
), pp.
1
4
.
33.
Wang
,
J.
,
Kamidi
,
V.
, and
Ben-Tzvi
,
P.
,
2018
, “
A Multibody Toolbox for Hybrid Dynamic System Modeling Based on Nonholonomic Symbolic Formalism
,”
Proceedings of the DSCC
,
Atlanta, GA
,
Sept. 30–Oct. 3
, pp.
V003T29A003
,
ASME
Paper No. DSCC2018-9000.
34.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems
,
Springer
,
Berlin
.
35.
Caro
,
S.
,
Khan
,
W. A.
,
Pasini
,
D.
, and
Angeles
,
J.
,
2010
, “
The Rule-Based Conceptual Design of the Architecture of Serial Schönflies-Motion Generators
,”
Mech. Mach. Theory
,
45
(
2
), pp.
251
260
.
You do not currently have access to this content.