Multi-objective optimization of a typical parallel tracking mechanism considering parameter uncertainty is carried out in this paper. Both dimensional and sectional parameters are regarded as design variables. Workspace, kinematic, stiffness, and dynamic performances are simultaneously considered in formulating optimal objectives and constraint conditions. Considering manufacturing and assembling errors, parameter uncertainty is modeled and evaluated to minimize their effects on the optimized performances. Analytical models between objectives and design variables are established to improve the efficiency of optimization while its accuracy is assured. The study of parameter uncertainty and analytical mapping model is incorporated in the optimization of the parallel tracking mechanism. With the aid of particle swarm algorithm, a cluster of solutions, called Pareto frontier, are obtained. By proposing an index, a cooperative equilibrium point representing the balance among objectives is selected and the optimized parameters are determined. The present study is expected to help designers build optimized parallel tracking mechanism in an effective and efficient manner.

References

1.
Mauro
,
S.
,
Battezzato
,
A.
,
Biondi
,
G.
, and
Scarzella
,
C.
,
2015
, “
Design and Test of a Parallel Kinematic Solar Tracker
,”
Mech. Eng.
,
7
(
12
), pp.
1
16
.
2.
Li
,
J. J.
, and
Jia
,
Y. H.
,
2014
, “
Configuration Design of X-Y Style Antenna Pedestal
,”
Elec. Mech. Eng.
,
30
(
5
), pp.
37
40
.
3.
Li
,
J. R.
,
2010
, “
Elementary Analysis on Vertex Tracking of X-Y Type Antenna Pedestal
,”
Mod. Elec. Tech.
,
11
, pp.
21
23
.
4.
Wu
,
W. L.
, and
Shi
,
J. Z.
,
2010
, “
Research on Relation of Antenna Pedestal Type and High Elevation Tracking
,”
Comput. Networks
,
7
, pp.
48
51
.
5.
Wu
,
J.
,
Chen
,
X. L.
, and
Wang
,
L. P.
,
2016
, “
Design and Dynamics of a Novel Solar Tracker With Parallel Mechanism
,”
IEEE-ASME Trans. Mechatronics
,
21
(
1
), pp.
88
97
.
6.
Song
,
Y. M.
,
Qi
,
Y.
,
Dong
,
G.
, and
Sun
,
T.
,
2016
, “
Type Synthesis of 2-DoF Rotational Parallel Mechanism Actuating the Inter-Satellite Link Antenna
,”
Chin. J. Aeronaut.
,
29
(
6
), pp.
1795
1805
.
7.
Dunlop
,
G. R.
, and
Jones
,
T. P.
,
1999
, “
Position Analysis of a Two DOF Parallel Mechanism—The Canterbury Tracker
,”
Mech. Mach. Theory
,
34
(
4
), pp.
599
614
.
8.
Gosselin
,
C. M.
, and
Caron
,
F.
,
1999
, “Two Degree-of-Freedom Spherical Orienting Device,” U. S. Patent No. 19995966991.
9.
Lum
,
M. J. H.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2006
, “
Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches
,”
IEEE Trans. Biomed. Eng.
,
53
(
7
), pp.
1440
1445
.
10.
Lum
,
M. J. H.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2004
, “
Kinematic Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), New Orleans, LA, Apr. 26–May 1, pp.
829
834.
11.
Cervantes-Sánchez
,
J. J.
,
Hernández-Rodríguez
,
J. C.
, and
González-Galván
,
E. J.
,
2004
, “
On the 5R Spherical, Symmetric Manipulator: Workspace and Singularity Characterization
,”
Mech. Mach. Theory
,
39
(
4
), pp.
409
429
.
12.
Wu
,
C.
,
Liu
,
X. J.
,
Wang
,
L. P.
, and
Wang
,
J. S.
,
2010
, “
Optimal Design of Spherical 5R Parallel Manipulators Considering the Motion/Force Transmissibility
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031002
.
13.
Wu
,
C.
,
Liu
,
X. J.
, and
Wang
,
J. S.
,
2009
, “
Transmission Analysis of Spherical 5R Parallel Manipulators
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
, London, June 22–24, pp.
331
336.
14.
Nikulin
,
V. V.
,
Sofka
,
J.
, and
Skormin
,
V. A.
,
2004
, “
Decentralized Control of an OmniWrist Laser Beam Tracking System
,”
Proc. SPIE
,
5338
, pp.
194
203
.
15.
Sofka
,
J.
,
Nikulin
,
V.
,
Skormin
,
V. A.
, and
Hughes
,
D. H.
,
2009
, “
Laser Communication Between Mobile Platforms
,”
IEEE Trans. Aerosp. Electron. Syst.
,
45
(
1
), pp.
336
346
.
16.
Skormin
,
V. A.
,
Nikulin
,
V.
, and
Nicholson
,
D. J.
,
2006
, “
Omni-Wrist III—A New Generation of Pointing Devices—Part II: Gimbals Systems-Control
,”
IEEE Trans. Aerosp. Electron. Syst.
,
42
(
2
), pp.
726
734
.
17.
Dong
,
X.
,
Yu
,
J. J.
,
Chen
,
B.
, and
Zong
,
G. H.
,
2012
, “
Geometric Approach for Kinematic Analysis of a Class of 2-DOF Rotational Parallel Manipulators
,”
Chin. J. Mech. Eng.
,
25
(
2
), pp.
24
247
.
18.
Ding
,
H. F.
,
Huang
,
P.
,
Liu
,
J. F.
, and
Kecskeméthy
,
A.
,
2013
, “
Automatic Structural Synthesis of the Whole Family of Planar 3-Degrees of Freedom Closed Loop Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041006
.
19.
Jiang
,
Q.
, and
Gosselin
,
C. M.
,
2008
, “
The Maximal Singularity-Free Workspace of the Gough-Stewart Platform for a Given Orientation
,”
ASME J. Mech. Des.
,
130
(
11
), pp.
1671
1676
.
20.
Vimal
,
K.
, and
Prince
,
S.
,
2015
, “
System Analysis for Optimizing Various Parameters to Mitigate the Effects of Satellite Vibration on Inter-Satellite Optical Wireless Communication
,”
IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems
(
SPICES
), Kozhikode, India, Feb. 19–21, pp.
1
4
.
21.
Hu
,
Y.
, and
Rao
,
S. S.
,
2009
, “
Game Theory Approach for Multi-Objective Optimal Design of Stationary Flat-Plate Solar Collectors
,”
Eng. Optim.
,
41
(
11
), pp.
1017
1035
.
22.
Voglewede
,
P. A.
, and
Ebert-Uphoff
,
I.
,
2005
, “
Overarching Framework for Measuring Closeness to Singularities of Parallel Manipulators
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1037
1045
.
23.
Wu
,
J.
,
Wang
,
L. P.
, and
Guan
,
L. W.
,
2013
, “
A Study on the Effect of Structure Parameters on the Dynamic Characteristics of a PRRRP Parallel Manipulator
,”
Nonlinear Dyn.
,
74
(
1–2
), pp.
227
235
.
24.
Menon
,
C.
,
Vertechy
,
R.
,
Markot
,
M. C.
, and
Parenti-Castelli
,
V.
,
2009
, “
Geometrical Optimization of Parallel Mechanisms Based on Natural Frequency Evaluation: Application to a Spherical Mechanism for Future Space Applications
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
12
24
.
25.
Alessandro
,
C.
, and
Rosario
,
S.
,
2014
, “
Elastodynamic Optimization of a 3T1R Parallel Manipulator
,”
Mech. Mach. Theory
,
73
, pp.
184
196
.
26.
Wu
,
G. L.
,
Caro
,
S.
,
Bai
,
S. P.
, and
Kepler
,
J.
,
2014
, “
Dynamic Modeling and Design Optimization of a 3-DOF Spherical Parallel Manipulator
,”
Rob. Auton. Syst.
,
62
(
10
), pp.
1377
1386
.
27.
Bi
,
Z. M.
, and
Wang
,
L. H.
,
2009
, “
Optimal Design of Reconfigurable Parallel Machining Systems
,”
Rob. Comput. Integr. Manuf.
,
25
(
6
), pp.
951
961
.
28.
Shin
,
H. P.
,
Lee
,
S. C.
,
Jeong
,
J. I.
, and
Kim
,
J. W.
,
2013
, “
Antagonistic Stiffness Optimization of Redundantly Actuated Parallel Manipulators in a Predefined Workspace
,”
IEEE/ASME Trans. Mech.
,
18
(
3
), pp.
1161
1169
.
29.
Sun
,
T.
, and
Lian
,
B. B.
,
2018
, “
Stiffness and Mass Optimization of Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
120
, pp.
73
88
.
30.
Song
,
Y. M.
,
Gao
,
H.
,
Sun
,
T.
,
Dong
,
G.
,
Lian
,
B. B.
, and
Qi
,
Y.
,
2014
, “
Kinematic Analysis and Optimal Design of a Novel 1T3R Parallel Manipulator With an Articulated Travelling Plate
,”
Rob. Comput. Integr. Manuf.
,
30
(
5
), pp.
508
516
.
31.
Sun
,
T.
,
Wu
,
H.
,
Lian
,
B. B.
,
Qi
,
Y.
, and
Wang
,
P. F.
,
2017
, “
Stiffness Modeling, Analysis and Evaluation of a 5 Degree of Freedom Hybrid Manipulator for Friction Stir Welding
,”
Proc. Inst. Mech. Eng. Part C
,
231
(
23
), pp.
4441
4456
.
32.
Klein
,
J.
,
Spencer
,
S.
,
Allington
,
J.
,
Bobrow
,
J. E.
, and
Reinkensmeyer
,
D. J.
,
2010
, “
Optimization of a Parallel Shoulder Mechanism to Achieve a High-Force, Low-Mass, Robotic-Arm Exoskeleton
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
710
715
.
33.
Mukerjee
,
R.
, and
Ong
,
S. H.
,
2015
, “
Variance and Covariance Inequalities for Truncated Joint Normal Distribution Via Monotone Likelihood Ratio and Log-Concavity
,”
J. Multivar. Anal.
,
139
, pp.
1
6
.
34.
Wu
,
J.
,
Wang
,
J. S.
,
Wang
,
L. P.
, and
Li
,
T. M.
,
2009
, “
Dynamics and Control of a Planar 3-DOF Parallel Manipulator With Actuation Redundancy
,”
Mech. Mach. Theory
,
44
(
4
), pp.
835
849
.
35.
Wang
,
G. G.
,
2003
, “
Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
210
220
.
36.
Witek-Krowiak
,
A.
,
Chojnacka
,
K.
,
Podstawczyk
,
D.
,
Dawiec
,
A.
, and
Pokomeda
,
K.
,
2014
, “
Application of Response Surface Methodology and Artificial Neural Network Methods in Modelling and Optimization of Biosorption Process
,”
Bioresour. Technol.
,
160
, pp.
150
160
.
37.
Agarwal
,
H.
, and
Renaud
,
J.
,
2004
, “
Reliability Based Design Optimization Using Response Surfaces in Application to Multidisciplinary Systems
,”
Eng. Optim.
,
36
(
3
), pp.
291
311
.
38.
Ishaque
,
K.
, and
Salam
,
Z.
,
2013
, “
A Deterministic Particle Swarm Optimization Maximum Power Point Tracker for Photovoltaic System Under Partial Shading Condition
,”
IEEE Trans. Ind. Electron.
,
60
(
8
), pp.
3195
3206
.
39.
Miranda
,
C. S.
, and
Zuben
,
F. J. V.
,
2017
, “
Necessary and Sufficient Conditions for Surrogate Functions of Pareto Frontiers and Their Synthesis Using Gaussian Processes
,”
IEEE Trans. Evol. Comput.
,
21
(
1
), pp.
1
13
.
You do not currently have access to this content.